Abstract:
Exemplary embodiments are directed to wireless power transfer. Energy from a transmit antenna is coupled to internal signals on a transmitter. An impedance measurement circuit generates an impedance indication signal for indicating an impedance difference between the coupled internal signals by comparing them. A controller samples the impedance indication signal and determines digital signaling values responsive to changes in the impedance indication signal. The impedance measurement circuit measures one or more of magnitude difference of the internal signals, phase difference of the internal signals, and changes in power consumed by an amplifier coupled between the RF signal and the transmit antenna. A transmitter generates the electromagnetic field with a transmit antenna responsive to a Radio Frequency (RF) signal to create a coupling-mode region within a near field of the transmit antenna.
Abstract:
Techniques for performing joint time-frequency automatic gain control (AGC) by a receiver are described. In an aspect, the receiver may transform time-domain samples with a fast Fourier transform (FFT) to obtain frequency-domain symbols and may detect for saturation of the frequency-domain symbols. The receiver may adjust a gain based on whether saturation is detected and may apply the gain prior to the FFT. In one design, the receiver may use a nominal value for a setpoint if saturation is not detected and may reduce the setpoint if saturation is detected. The receiver may adjust the gain based on the setpoint, which may determine the average power of the time-domain samples. In another design, the receiver may determine the gain based on a gain offset and may vary the gain offset based on whether saturation is detected. For both designs, the receiver may apply the gain on digital samples and/or an analog signal prior to the FFT.
Abstract:
In one aspect this invention provides a method to operate a receiver, and includes applying signals received from at least first and second antennas to corresponding first and second finger pairs, where each finger pair comprises a first finger member and a second finger member, and outputting traffic symbols and pilot symbols from each finger member; space combining weighted pilot symbols for each pair to produce a noise plus interference estimation for the pair under consideration; combining the noise plus interference estimation of each pair to generate a cumulative noise plus interference estimate; subtracting the cumulative noise plus interference estimate from an estimate of the total signal energy input to a channel decoder to generate an unbiased total signal estimate; and dividing the unbiased total signal estimate by the cumulative noise plus interference estimate to obtain an unbiased and accurate signal to interference plus noise ratio estimate that accounts for both space correlated and uncorrelated interference terms.
Abstract:
In one aspect this invention provides a method to operate a receiver, and includes applying signals received from at least first and second antennas to corresponding first and second finger pairs, where each finger pair comprises a first finger member and a second finger member, and outputting traffic symbols and pilot symbols from each finger member; space combining weighted pilot symbols for each pair to produce a noise plus interference estimation for the pair under consideration; combining the noise plus interference estimation of each pair to generate a cumulative noise plus interference estimate; subtracting the cumulative noise plus interference estimate from an estimate of the total signal energy input to a channel decoder to generate an unbiased total signal estimate; and dividing the unbiased total signal estimate by the cumulative noise plus interference estimate to obtain an unbiased and accurate signal to interference plus noise ratio estimate that accounts for both space correlated and uncorrelated interference terms.
Abstract:
A system and method for estimating the power-level of a signal received at a mobile-station receiver operating in a wireless network according to a CDMA standard. An analog automatic gain controller (AGC) loop, a digital filter, and a digital AGC loop are used, in sequence, to process a received RF signal that has been amplified, converted to baseband, and filtered using an analog baseband signal. The linear gain values of the analog AGC and the digital AGC are multiplied to produce a gain-value product. The logarithm of the gain-value product is used for executing the power-estimating function by comparison to a predetermined received-signal power estimation curve.