Abstract:
An organic light-emitting diode includes a first electrode; a second electrode facing the first electrode; an emission layer (EML) between the first electrode and the second electrode; a first charge generation layer between the EML and the first electrode and including a first compound and a first charge generation material; a first layer between the EML and the first charge generation layer and including a second compound; a second charge generation layer between the EML and the first layer and including a third compound and a second charge generation material; a second layer between the EML and the second charge generation layer and including a fourth compound; and a buffer layer between the EML and the second layer. The first and third compounds each independently includes a compound represented by Formula 1, and the second and fourth compounds each independently includes a compound represented by Formula 2.
Abstract:
A laser irradiation device and a method of fabricating an organic light emitting display device (OLED) using the same are disclosed. The laser irradiation device includes: a laser source generating a laser beam; a mask disposed below the laser source and patterning the beam and a projection lens disposed below the mask and determining magnification of the laser beam through the mask, wherein the laser beam penetrating the mask has different doses in at least two regions. Thus, the laser irradiation device can maximize emission efficiency and enhance the quality of a transfer layer pattern when an organic layer of the OLED is formed using the laser irradiation device.
Abstract:
A carbazole-based compound of Formula 1 and an organic light-emitting diode including the same. The carbazole-based compound represented by Formula 1 has a triarylamine structure, wherein at least one of R1 to R5 is essentially a nitrogen-containing group. Thus, the carbazole-based compound has high glass transition temperature and/or high melting point, and is stable during electron injection, and when interposed between a pair of electrodes (anode and cathode) of an organic light-emitting diode, the carbazole-based compound may have excellent thermal resistance against Joule's heat generated in organic layers between the pair of electrodes, between the organic layers, or between the organic layer and the electrode during an operation of the organic light-emitting diode.
Abstract:
An organic light emitting display device (OLED) suppressing a resonance effect and having an enhanced luminance, and a method of fabricating the same, are disclosed. One embodiment of the OLED includes: a substrate; a first electrode disposed over the substrate and having a reflective layer; an organic layer disposed over the first electrode and having a white emission layer; a second electrode disposed over the organic layer; and a transmittance controlled layer (TCL) disposed over the second electrode and having an optical path length of about 260 to about 1520 Å.
Abstract:
A method of fabricating an Organic Light Emitting Diode (OLED) includes: forming red, green, blue and white pixel regions on a substrate; forming first electrodes in the respective pixel regions on the substrate, the first electrodes being spaced apart from one another; forming a pixel defining layer having an opening partially exposing surfaces of the first pixel electrodes on the substrate; forming organic layers including at least an organic EMission Layer (EML) in the opening of the pixel defining layer; forming a second electrode on the organic layers; forming a passivation layer on the second electrode; and forming red, green and blue color filter layers on the passivation layer using a laser induced thermal imaging method to correspond to the organic layers of the red, green and blue pixel regions, the red, green and blue color filter layers being sequentially formed and ends of a first-formed color filter layer overlapping second and third formed color filter layers.
Abstract:
A flat panel display device including: a plurality of sub-pixels for emitting light having different wavelengths; and an intensity adjusting layer in a light path of at least one sub-pixel from among the plurality of sub-pixels and for adjusting an intensity of light emitted from a corresponding sub-pixel of the at least one sub-pixel.
Abstract:
An organic light emitting diode (OLED) display device includes a substrate, a first electrode on the substrate, an organic layer on the first electrode, the organic layer including a blue (B) emission layer, a green (G) emission layer, and a red (R) emission layer, the B emission layer including a dopant in an amount of about 10 wt % to about 12 wt %, and a second electrode on the organic layer.
Abstract:
An organic light emitting display device and a method of fabricating the same, in which a resonance effect is suppressed and transmittance is substantially the same in a wavelength band of visible light. The organic light emitting display device includes: a substrate; a first electrode disposed on the substrate and including a reflection layer; an organic layer disposed on the first electrode and including a white emission layer; a second electrode disposed on the organic layer; a transmittance controlled layer disposed on the second electrode; and a metal layer disposed on the transmittance controlled layer.
Abstract:
An organic light-emitting diode including a first electrode; a second electrode facing the first electrode; an emission layer interposed between the first electrode and the second electrode; a first hole transport layer including a first hole transporting compound; a second hole transport layer including a second hole transporting compound, the first and second hole transport layers being interposed between the first electrode and the emission layer; an electron transport layer interposed between the emission layer and the second electrode; a first mixing layer interposed between the first electrode and the first hole transport layer, contacting the first hole transport layer, and including the first hole transporting compound and a first cyano group-containing compound; and a second mixing layer interposed between the first electrode and the second hole transport layer, contacting the second hole transport layer, and including the second hole transporting compound and a second cyano group-containing compound.
Abstract:
An organic light-emitting device includes an emission layer between first and second electrodes, a first hole transport layer that is between the emission layer and the first electrode and that includes a first hole transport compound and a first electron acceptor, a second hole transport layer that is between the emission layer and first hole transport layer and that includes a second hole transport compound, a third hole transport layer that is between the emission layer and the second hole transport layer and that includes a third hole transport compound and a second electron acceptor, a fourth hole transport layer that is between the emission layer and the third hole transport layer and that includes a fourth hole transport compound, a buffer layer between the emission layer and the fourth hole transport layer, and an electron transport layer that includes a pyrimidine-based compound.