Abstract:
A transition device for deploying instrumentation below a downhole tool, such as a downhole pump, employed in hydrocarbon recovery operations can include a housing serially connectable between the downhole tool and a guide string insertable into the well ahead of the downhole tool. The transition device can also include a sealable crossover channel extending through the housing and having a proximal and a distal end, the crossover channel providing a crossover path for at least one instrumentation line between an exterior of the transition device at the proximal end and an interior of the guide string at the distal end. The fluid channel can extend through the housing and be radially offset from and capable of establishing fluid communication with the crossover channel, the fluid channel being configured to provide a pressurized fluid into the crossover channel to propel the at least one instrumentation line forward inside the guide string.
Abstract:
A method for mobilizing viscous hydrocarbons in a reservoir includes (a) injecting an aqueous solution into the reservoir with the reservoir at the reservoir ambient temperature. The aqueous solution includes water and a water-soluble chemical agent that is substantially non-decomposable and substantially non-reactive in the reservoir at the reservoir ambient temperature. In addition, the method includes (b) adding thermal energy to the reservoir at any time after (a) to increase the temperature of at least a portion of the reservoir to an elevated temperature greater than the ambient temperature of the reservoir. Further, the method includes (c) in response to the elevated temperature in (b), mobilizing at least a portion of the hydrocarbons in the reservoir by reducing the viscosity of the hydrocarbons and allowing the chemical agent to enhance mobilization of the hydrocarbons.
Abstract:
A method for recovering viscous hydrocarbons from a reservoir in a subterranean formation includes (a) injecting steam into the reservoir. In addition, the method includes (b) injecting a surfactant into the reservoir with the steam during (a). Further, the method includes (c) decreasing the viscosity of the hydrocarbons in the reservoir with thermal energy from the steam. Still further, the method includes (d) emulsifying the hydrocarbons with the surfactant during (b) and (c). Moreover, the method includes (e) mobilizing at least some of the hydrocarbons in the reservoir.
Abstract:
A method and apparatus for analyzing a bitumen-containing process stream and controlling a process. The method including directing a beam of infrared light at the bitumen-containing process stream, capturing light corresponding to the infrared light after interaction with the bitumen-containing process stream, and analyzing the captured light to obtain a spectrum. A composition estimate can be generated based on the spectrum and a calibrated model. A controller is operative to adjust a setpoint of the process in response to the composition estimate.
Abstract:
Systems, methods, and media are described for instructing power shovel operators. Multiple types of information about the power shovel and other operations at a work site are integrated into a GUI in order to present power shovel operators with real-time visual feedback on operational decisions and actionable guidance on ongoing loading operations. The operator is presented with a user interface screen showing performance information such as a performance score indicating the operator's overall efficiency or effectiveness over a predetermined time period. The operator is presented with bucket load information to assist in deciding whether a current load of shoveled material in the bucket of the operator's power shovel should be loaded into a material transport vehicle (e.g., a haul truck), based on vehicle payload target information of the material transport vehicle. Other types of instruction are disclosed as part of the GUI.
Abstract:
An antibiofilm composition is provided. The antibiofilm composition includes a polycarboxylic acid derivative or a salt thereof, onto which a hydrophobic group, a poly(ethylene oxide) group and/or a poly(propylene oxide) group is covalently bound, an essential oil, and a biosurfactant.
Abstract:
A composition for application to a plant is provided. The composition includes a photosensitizer that generates reactive oxygen species in the presence of light and oxygen, the photosensitizer being selected from the group consisting of a porphyrin, a reduced porphyrin and a combination thereof; a film-forming agent, the film-forming agent forming a film that is substantially impermeable to oxygen when in a non-hydrated state; an antioxidant agent; and an aqueous carrier in which the photosensitizer, the film-forming agent and the antioxidant agent are solubilized and/or dispersed. The composition is used for improving the health of a plant.
Abstract:
Rotating elements receivable within an extractor trough of an extractor configured for non-aqueous extraction of bitumen from oil sands are described. The rotating element can include a shaft operatively couplable to a motor, and projections extending outwardly from the shaft and being removably secured thereto. The rotating element can also include a shaft mounting structure couplable to a shaft, comprising a shaft receiving hub configured for receiving the shaft therein. The rotation of the rotating element can provide digestion and extraction of bitumen from the oil sands while advancing solids in a downstream direction within the extractor trough, as solvent diluted bitumen flows in an upstream direction toward a liquid outlet. Methods for servicing a rotating element and for manufacturing a non-aqueous extraction (NAE) extractor are also provided.