Abstract:
According to one embodiment, an information management server device determines whether to permit the duplicating of the original data selected in the duplication source selection information. The information management server device reads the management ID of the original data related to the management ID in the duplication request and the electronic data body related to the entity ID with reference to the first and second storage units when the determination result for the original data has shown that the duplicating is permitted and creates duplicated original data by giving a new management ID to duplicated data obtained by duplicating the electronic data body.
Abstract:
An X-ray imaging apparatus is configured to subtract a first X-ray image from a second X-ray image to generate a first subtraction image showing information on a blood vessel, calculate an amount of pixel shift between the first X-ray image and the third X-ray image, subtract the first X-ray image from the third X-ray image to generate a second subtraction image showing information on an insertion instrument, and combine the first subtraction image with the second subtraction image to generate a synthetic image by performing a pixel shift correction based on the amount of pixel shift.
Abstract:
A storage unit stores a plurality of vectors and a plurality of past electrocardiographic phases in association with each other. Each of the vectors is a vector from a past reference point to a past objective point. A Reference point specifying unit specifies a current reference point on a current image. An electrocardiograph detects a current electrocardiographic phase associated with the current image. A vector specifying unit specifies a specific vector associated with a past electrocardiographic phase corresponding to the detected current electrocardiographic phase among the plurality of vectors. Objective point calculation unit calculates a position of a current objective point on the current image based on the specified vector and the position of the current reference point. A display unit displays the position of the current objective point on the current image.
Abstract:
A recording device having a highly integrated recording head, which can perform high-quality high-speed printing of halftone image and which is compact and inexpensive to manufacture and can work at reduced running cost (with no need of replacing its recording head due to contamination with ink) and at saved power consumption. The recording device comprises an ink feeding unit for applying ultraviolet curing ink to an image transfer intermediate, an ultraviolet ink-curing head for selectively ultraviolet curing ink applied to the image transfer intermediate according to an image pattern, a platen for pressing a recording medium against the image transfer intermediate to transfer not-cured ink from the image transfer intermediate onto the recording medium, ultraviolet thermal ink-curing unit for fixing the ink on the recording medium and an ink removing unit for removing residual ink from the image transfer intermediate.
Abstract:
A pair of opposite end portions of a buckling exothermic body as an exothermic resistor are fixed onto a substrate via insulating members. The buckling exothermic body heats with resistance thereof by applying a voltage from a power source to the buckling exothermic body via a switch. As inner temperature of the exothermic resistor reaches a predetermined temperature or higher required for the exothermic resistor to buckle, and a compressive force exceeds a buckling load, the exothermic resistor buckles and distorts towards thermosensible paper from a non-shifted state in which there is virtually no thermal stress. As the buckled and distorted exothermic resistor comes into contact with the thermosensible paper, recording, such as printing, is performed only at the contact portion. This reduces thermal mutual interference between neighboring buckling exothermic bodies. As a result, recording of high resolution and high print quality is performed. Moreover, since, unlike the prior art, there is no need to provide an abrasion protection layer, production costs can be cut down and a smaller and lighter head can be made.
Abstract:
An ink jet head, having a long life, capable of discharging ink with a strong force and at a high speed is provided at a small size. A container comprises a casing and a nozzle plate covering the upper surface of the casing and an ink discharge opening. A buckling structure is fixed at its longitudinal ends to the bottom surface of the container via an installing member, and its center portion can be deformed upward by buckling. A diaphragm is positioned above the buckling structure with a space therebetween and placed on an inner wall of the casing with its periphery fixed thereto so as to liquid-tightly partition the inside of the container into a space and an ink chamber. A connection member connects the diaphragm and the buckling structure at their center. Electrodes are provided at both ends of the buckling structure to generate thermal stress therein by supplying electric current for buckling and consequently to apply pressure to ink in the ink chamber for discharging.
Abstract:
A pressure generating member applies a pressure to an ink, the member having a symmetric configuration and including a buckling body. The buckling body may include a radially extending ribbed portion on its upper surface and no buckling layer beneath it. A heater layer is interposed between insulating layers for heating the buckling body, the buckling body having its peripheral edge portion fixed on a substrate. A center portion of the buckling body is buckled by being heated. An orifice plate is arranged so as to cover the pressure generating member with interposition of a gap defining a cavity for the ink. The orifice plate is provided with a nozzle serving as an ink discharge outlet located in a portion of the orifice plate opposite to the pressure generating member.
Abstract:
An ink jet of the present invention includes a nozzle plate having a nozzle orifice, a substrate having an opening communicating with the nozzle orifice, an ink discharge plate having a center portion positioned in the nozzle orifice of the nozzle plate and the opening, and both ends supported by being sandwiched between the nozzle plate and the substrate, the center portion being closer to the nozzle plate than the both ends, and a compressive member for applying a compressive force in the axis direction of the ink jet plate so that the center portion of the ink discharge plate is deformed towards the nozzle orifice by buckling. Because of this structure, the ink discharge plate is always buckled towards the nozzle orifice, and forms an ink droplet without erroneous operation.