Abstract:
A data storage device with improved data storage densities, coupled with lower hard error and write-inhibit events is described. A feed-forward write inhibit (FFWI) method enables data tracks to be written more densely. Alternatively, the FFWI method may reduce the hard error and write inhibit events to improve data storage performance. A concept of virtual tracks enables the FFWI method to be applied to the writing of circular data tracks with non-circular servo tracks, or to the writing of non-circular data tracks with PES data from circular servo tracks—in both cases, improvements to performance and/or storage densities are enabled. The FFWI method may also be applied to the case of both non-circular servo and data tracks.
Abstract:
Patterned magnetic media are described in which the servo sectors include at least two PES offset segments that can be used for the position error signal (PES) and identification of local track position. The two PES offset segments deviate from the track centerline in opposite directions. The lengths of the offset PES offset segments are systematically varied in a repeating pattern to provide a unique servo signal pattern for each track in a local group of adjacent tracks. The locally unique servo sector pattern allows the servo system to use the pattern of the signals generated from the offset and non-offset segments to determine the local track position, which is similar to information provided by the low order Gray code bits in prior art designs. Therefore, the number of bits in the track ID code can be reduced.
Abstract:
Patterned magnetic media are described in which the servo sectors include at least two PES offset segments that can be used for the position error signal (PES) and identification of local track position. The two PES offset segments deviate from the track centerline in opposite directions. The lengths of the offset PES offset segments are systematically varied in a repeating pattern to provide a unique servo signal pattern for each track in a local group of adjacent tracks. The locally unique servo sector pattern allows the servo system to use the pattern of the signals generated from the offset and non-offset segments to determine the local track position, which is similar to information provided by the low order Gray code bits in prior art designs. Therefore, the number of bits in the track ID code can be reduced.
Abstract:
A HDD comprising a temperature sensor disposed inside the HDD configured to periodically measure temperature inside of said hard disk drive; a magnetic disk; a read head; a write head; memory for storing RWO data. The RWO data is a function of a distance between the read head and the write head. The HDD also includes a RWO data adjustor configured to adjust the RWO data in response to a change in temperature of the HDD to compensate for a change in the distance between the read head and the write head based on the change in temperature.
Abstract:
A hard disk drive control module has a feed-forward signal input port communicatively coupled with a reference model. The hard disk drive control module has a tracking error signal input port communicatively coupled with a magnetic transducer of the hard disk drive. The hard disk drive control module has an error calculator module configured for determining a difference between an estimated tracking error signal in response to a first feed-forward signal and an actual tracking error signal of the magnetic transducer in response to the first feed-forward signal. The hard disk drive control module has a feed-forward signal adjuster module configured for adjusting a gain and a phase for a second feed-forward signal based on the difference between the estimated tracking error signal in response to the first feed-forward signal and the actual tracking error signal of the magnetic transducer. The hard disk drive control module has a feed-forward signal adjustment output port communicatively coupled to the second feed-forward signal.
Abstract:
A magnetic recording disk drive has a disturbance sensor and a disturbance frequency identifier that are used to adjust the frequency of a peak filter as the disturbance frequency changes. The sensor and the frequency identifier are separate from the servo control loop and thus do not rely on the head position error signal (PES) to predict the disturbance frequency. The adjustable peak filter is coupled in parallel with the servo feedback controller. The peak filter modifies the open loop transfer function and the error rejection function of the servo control loop to provide a higher rejection at the identified frequency. The peak filter may be switched out of or uncoupled from the servo feedback controller during track-seeking or as desired, depending on the amplitude of the sensor signal or the amplitude of the PES.
Abstract:
A data recording disk drive has one or more capacitive sensors for sensing out-of-plane vibration of the disk or disks. The sensors are attached to a support structure that is attached to the disk drive housing. Each sensor is associated with a disk and faces a surface of the disk near the outer perimeter of the disk and close to the recording head. The support structure can be made of a metal or a high-strength plastic and can be a separate structure mounted to the housing, or integrated as part of the single-piece housing casting. If it is metallic, as would be the case if it were integrated with the housing, then layers of insulating material separate the sensors from the support structure. A support structure that serves other functions in the disk drive, such as a support for air dams that extend between the disks, can also function as the support structure for the capacitive sensors.
Abstract:
A magnetic recording disk drive has a disturbance sensor and a disturbance frequency identifier that are used to adjust the frequency of a peak filter as the disturbance frequency changes. The sensor and the frequency identifier are separate from the servo control loop and thus do not rely on the head position error signal (PES) to predict the disturbance frequency. The adjustable peak filter is coupled in parallel with the servo feedback controller. The peak filter modifies the open loop transfer function and the error rejection function of the servo control loop to provide a higher rejection at the identified frequency. The peak filter may be switched out of or uncoupled from the servo feedback controller during track-seeking or as desired, depending on the amplitude of the sensor signal or the amplitude of the PES.
Abstract:
A data recording disk drive has one or more capacitive sensors for sensing out-of-plane vibration of the disk or disks. The sensors are attached to a support structure that is attached to the disk drive housing. Each sensor is associated with a disk and faces a surface of the disk near the outer perimeter of the disk and close to the recording head. The support structure can be made of a metal or a high-strength plastic and can be a separate structure mounted to the housing, or integrated as part of the single-piece housing casting. If it is metallic, as would be the case if it were integrated with the housing, then layers of insulating material separate the sensors from the support structure. A support structure that serves other functions in the disk drive can also function as the support structure for the capacitive sensors.
Abstract:
A data recording disk drive has a plurality of capacitive sensors, each sensor facing a surface of an associated disk, a capacitance sensing circuit for converting the sensed capacitance to a voltage representative of the distance between the sensor and the disk surface, and a feedforward controller that receives the voltage signal. The feedforward controller has a transfer function with gain and phase characteristics designed to match the transfer function from the out-of-plane disk vibration to the position of the read/write head while accounting for the effects of the sensor dynamics and the dynamics of the actuator. The output from the feedforward controller is combined with the output from the disk drive's servo feedback controller so that the effects of disk vibration on track misregistration of the head are removed from the control signal to the actuator.