Abstract:
A camera assembly for generating a high resolution image of an area of interest on a workpiece includes a sensor array and an optical lens that focuses light reflected from the workpiece onto the sensor array. The sensor array is inclined relative to an optical axis defined by the optical lens disposed in a fixed position relative to the optical lens. A galvanometer driven minor assembly directs a field of view of the optical lens toward the area of interest on the workpiece translating light reflected from the area of interest of the workpiece onto the sensor array. The inclination of the sensor array provides varying degrees of resolution relative to a distance of the workpiece area of interest from the camera assembly enabling the camera assembly to generate high resolution images at varying distances from the camera assembly without adjusting the optical lens relative to the sensor array.
Abstract:
A method of projecting a template on a workpiece provides a measurement system for determining a location of a workpiece and a laser projector for projecting a laser template. A feature on the workpiece having geometric significance is identified. A physical location of the feature in a three dimensional coordinate system is determined and compared to a theoretical location of the feature on computer model of the workpiece. A template correlated to the feature is selected. The projection of the template onto the workpiece relative to the feature is optimized by correlating alignment of the physical location of the feature with the computer model of the feature. The template is projected onto the workpiece based upon the optimized projection for directing work to be performed on the workpiece.