Abstract:
A medium processing apparatus includes: a binder to bind multiple sheets at a binding position to form a sheet bundle; a sheet inserter having an opening into which the sheet bundle is insertable from an outside of the sheet inserter to a bindable region having the binding position; and a binding position verifier allowing the multiple sheets, inserted from the opening to the bindable region, to be verifiable from an outside of the sheet inserter.
Abstract:
An envelope processing apparatus inserts an enclosure into an envelope and includes a first conveyor, a first ejector, a second conveyor, a second ejector, and circuitry. The first conveyor conveys the enclosure to an enclosing position. The envelope in which the enclosure is enclosed is ejected to the first ejector. The second conveyor conveys the envelope to the enclosing position via an envelope conveyance passage extended in a substantially vertical and up-and-down direction and conveys the envelope in which the enclosure is inserted to the first ejector. The second ejector is separate from the first ejector. The enclosure is ejected to the second ejector. The circuitry controls a conveyance operation of the first conveyor and the second conveyor.
Abstract:
An enclosing-sealing apparatus includes a flap opener that opens a flap of an envelope while the envelope is conveyed to an enclosing position. A first envelope detector is disposed upstream from the flap opener in an envelope conveyance direction and detects both ends of the envelope in the envelope conveyance direction. A second envelope detector is disposed downstream from the flap opener in the envelope conveyance direction and detects both ends of the envelope in the envelope conveyance direction in an open state in which the flap opens. A controller determines the open state of the flap based on a first detection result sent from the first envelope detector and a second detection result sent from the second envelope detector. The controller performs troubleshooting for enclosing the enclosure into the envelope if the controller determines that the open state of the flap is faulty.
Abstract:
A fold-enforcing assembly includes a fold-enforcing device, a moving device to move the fold-enforcing device in a direction of a fold of a sheet bundle, and control circuitry. The fold-enforcing device includes a pressing member pair to nip and press the fold of the sheet bundle in a direction of thickness, a pressing mechanism to pressurize and depressurize the pressing member pair, and a driver to drive the pressing mechanism. Controlled by the control circuitry, the moving device moves the fold-enforcing device in accordance with a size of the sheet bundle in the direction of the fold; pressing mechanism pressurizes the pressing member pair to press a first end portion of the sheet bundle in the direction of the fold; the moving device moves the fold-enforcing device to a second end portion of the sheet bundle; and pressing mechanism depressurizes the pressing member pair in the second end portion.
Abstract:
A binding device includes a receptacle, an aligner, a moving mechanism, first and second binders, and a guide. The aligner aligns a bundle of recording media in a width direction thereof on the receptacle. The moving mechanism moves the aligner in the width direction. A maximum thickness of the bundle of recording media boundable in the second binder is smaller than that in the first binder. The guide is movable conforming to the maximum thickness of the bundle of recording media boundable in the first binder, and conforming to that in the second binder, to guide and direct the bundle of recording media to a receiving portion of the first binder when the first binder binds the bundle of recording media, and to a receiving portion of the second binder when the second binder binds the bundle of recording media, respectively. The guide is movable in conjunction with the aligner.
Abstract:
A binding device includes a receptacle, an aligner, a moving mechanism, first and second binders, and a guide. The aligner aligns a bundle of recording media in a width direction thereof on the receptacle. The moving mechanism moves the aligner in the width direction. A maximum thickness of the bundle of recording media boundable in the second binder is smaller than that in the first binder. The guide is movable conforming to the maximum thickness of the bundle of recording media boundable in the first binder, and conforming to that in the second binder, to guide and direct the bundle of recording media to a receiving portion of the first binder when the first binder binds the bundle of recording media, and to a receiving portion of the second binder when the second binder binds the bundle of recording media, respectively. The guide is movable in conjunction with the aligner.
Abstract:
A sheet processing device is for binding sheets together. The sheet processing device includes binding units differing from each other in maximum sheet count, the maximum sheet count being a maximum number of sheets that can be bound at a time; a sheet tray configured to hold sheets until all to-be-bound sheets are placed therein, the number of the to-be-bound sheets being a largest one of the maximum sheet counts of the binding units or smaller; and a stacked-sheet-count limiting unit situated in a thickness direction of the sheets held in the sheet tray. The stacked-sheet-count limiting unit is configured to limit the number of sheets held in the sheet tray by varying a distance from a sheet support surface of the sheet tray on which the sheets are placed, depending on one of the binding units by which the sheets held in the sheet tray are to be bound.
Abstract:
A sheet processing apparatus includes: a conveying unit configured to convey a sheet along a sheet conveyance path; a conveyance-path supporting unit configured to support both ends of the sheet conveyance path with respect to a direction perpendicular to a sheet conveying direction; a first stitching unit configured to stitch the sheets conveyed; a second stitching unit configured to stitch the sheets conveyed; a first moving unit configured to move the first stitching unit in a direction perpendicular to the sheet conveying direction; and a second moving unit configured to move the second stitching unit in a direction perpendicular to the sheet conveying direction, wherein any one of the first stitching unit and the second stitching unit is movable to outside of the conveyance-path supporting unit.
Abstract:
A paper binding device comprises: a pair of binding members that has a pair of teeth portions, and presses to bind a bundle of paper sheets; a moving unit that causes one of the pair of binding members to move along with the other of the pair of binding members between a binding position at which the bundle of paper sheets is bound and a retracted position; a separating unit that moves coordinating with movement of the one of the pair of binding members, and when the one of the pair of binding members moves from the binding position to the retracted position, that contacts with the bundle of the paper sheets and causes the bundle of paper sheets to separate from the one of the pair of binding members; and a restricting member that stops the separating unit at a restricting position between the binding position and the retracted position, when the one of the pair of the binding members moves from the binding position to the retracted position.
Abstract:
According to an aspect of an embodiment, a sheet processing apparatus includes: a conveying unit configured to convey sheets; a stacking unit configured to stack the conveyed sheets to form a sheet stack; and a binding unit configured to include a pair of toothed jaw and bind the sheet stack by pressing the sheet stack between the pair of toothed jaw, wherein at least one portion of edges of the toothed jaw is rounded.