Abstract:
A fiber optic connector includes a front housing having sidewalls each defining a slot and a rear insert with a pair of locking flanges extending radially away, the locking flanges configured to snap-fit into the slots, each locking flange defining a front face and a rear face, the radially outermost portion of the rear face defining an edge, the edge being the rearmost extending portion of the locking flange. Another fiber optic connector includes a front housing defining a front opening at a front end, a circular rear opening at a rear end, and an internal cavity extending therebetween. A rear insert including a generally cylindrical front portion is inserted into the front housing through the circular rear opening, the front portion defining at least one longitudinal flat configured to reduce the overall diameter of the generally cylindrical front portion configured to be inserted into the front housing.
Abstract:
A method of tuning a fiber optic connector includes: assembling the fiber optic connector to a partially assembled state; tuning the fiber optic connector in the partially assembled state; assembling the fiber optic connector to an assembled state; and tuning the fiber optic connector in the assembled state.
Abstract:
A packaging arrangement for telecommunications cabling is disclosed herein. The packaging arrangement includes a modular spool assembly defined by a first flange, an opposing second flange, and a spool hub separating the first flange from the second flange, wherein a telecommunications cable may be wound between the first and second flanges. Each flange defines a first cable contact side, a second cable-end storage side, and an opening allowing the telecommunications cable to pass from the first side to the second side, the second side defining a storage compartment for storing an end of the telecommunications cable passing through the opening in the flange.
Abstract:
A method of tuning a fiber optic connector includes: assembling the fiber optic connector to a partially assembled state; tuning the fiber optic connector in the partially assembled state; assembling the fiber optic connector to an assembled state; and tuning the fiber optic connector in the assembled state.
Abstract:
A method of manufacturing fiber optic connectors includes precision molding optical ferrule assemblies around optical fibers for use in the connectors. The optical ferrule assemblies are over-molded in two-parts: a ferrule and a hub. The ferrule is molded around a coated section of fiber and a fiber tip is formed (e.g., using a laser) at a stripped section of the optical fiber at a location axially spaced from the ferrule. The fiber is pulled into the ferrule to align the tip and the hub is formed to complete the ferrule assembly.
Abstract:
An optical fiber connection system includes a first and a second optical fiber, each with end portions that are terminated by a first and a second fiber optic connector, respectively. A fiber optic adapter connects the first and the second fiber optic connectors. The fiber optic adapter includes a housing and a fiber alignment apparatus. The fiber alignment apparatus includes V-blocks and gel blocks. Each of the fiber optic connectors includes a connector housing and a sheath. The end portions of the optical fibers are positioned beyond distal ends of the respective connector housings. The sheath is slidably connected to the connector housing and slides between an extended configuration and a retracted configuration. The sheath covers the end portion of the respective optical fiber when the sheath is at the extended configuration and exposes the end portion when at the retracted configuration. The end portions of the optical fibers are cleaned when slid between the V-blocks and the gel blocks.
Abstract:
A packaging arrangement for telecommunications cabling is disclosed herein. The packaging arrangement includes a modular spool assembly defined by a first flange, an opposing second flange, and a spool hub separating the first flange from the second flange, wherein a telecommunications cable may be wound between the first and second flanges. Each flange defines a first cable contact side, a second cable-end storage side, and an opening allowing the telecommunications cable to pass from the first side to the second side, the second side defining a storage compartment for storing an end of the telecommunications cable passing through the opening in the flange.
Abstract:
A fiber optic cable and connector assembly including a fiber optic connector mounted at the end of a fiber optic cable. The fiber optic connector includes a ferrule assembly including a stub fiber supported within a ferrule. The stub fiber is fusion spliced to an optical fiber of the fiber optic cable at a location within the fiber optic connector.
Abstract:
A fiber optic telecommunications device includes a frame defining a right vertical support and a left vertical support. A chassis is mounted to the right and left vertical supports, wherein the chassis is configured to pivot about a pivot axis that is defined by one of the right and left vertical supports. A plurality of modules are mounted on the chassis, each of the modules slidable on the chassis along a direction extending between the right and left vertical supports, wherein the chassis is configured to pivot about a plane parallel to the sliding direction of the modules, each module defining fiber optic connection locations.
Abstract:
A method of packing a plurality of lengths of cable includes routing a first length of cable around a first guide that extends from a first half of a packing system base. A second length of cable is routed around a second guide that extends from a second half of the packing system base. A third length of the cable is routed around the first guide such that the third length of cable is located on the first length. The second half of the packing system base is then folded onto the first half, such that the second length of cable is deposited on top of the third length of cable, around the first guide. The second half is then unfolded from the first half such that the first length of cable, the second length of cable, and the third length of cable form a first cable loop.