Abstract:
A system for corneal treatment includes a light source that activates cross-linking in at least one selected region of a cornea treated with a cross-linking agent. The light source delivers photoactivating light to the at least one selected region of the cornea according to a set of parameters. The system includes a controller that receives input relating to the cross-linking agent and the set of parameters. The controller includes computer-readable storage media storing: (A) program instructions for determining cross-linking resulting from reactions involving ROS including at least peroxides, superoxides, and hydroxyl radicals, and (B) program instructions for determining cross-linking from reactions not involving oxygen. The controller executes the program instructions to output a calculated amount of cross-linking in the at least one selected region of the cornea. In response to the calculated amount of cross-linking, the light source adjusts at least one value in the set of parameters.
Abstract:
A system for corneal treatment includes a light source that activates cross-linking in at least one selected region of a cornea treated with a cross-linking agent. The light source delivers photoactivating light to the at least one selected region of the cornea according to a set of parameters. The system includes a controller that receives input relating to the cross-linking agent and the set of parameters. The controller includes computer-readable storage media storing: (A) program instructions for determining cross-linking resulting from reactions involving ROS including at least peroxides, superoxides, and hydroxyl radicals, and (B) program instructions for determining cross-linking from reactions not involving oxygen. The controller executes the program instructions to output a calculated amount of cross-linking in the at least one selected region of the cornea. In response to the calculated amount of cross-linking, the light source adjusts at least one value in the set of parameters.
Abstract:
An antimicrobial treatment system comprises a wearable photoactivation device. The wearable photoactivation device includes a body configured to be positioned on a head of a subject over one or more eyes of the subject. The body includes one or more windows or openings that allow the one or more eyes to see through the body. The body includes one or more photoactivating light sources coupled to the body and configured to direct photoactivating light to the one or more eyes according to illumination parameters. The illumination parameters determine a dose of the photoactivating light that activates, according to photochemical kinetic reactions, a photosensitizer applied to the one or more eyes and generates reactive oxygen species that provide an antimicrobial effect in the one or more eyes, without substantially inducing cross-linking activity that produces biomechanical changes in the one or more eyes.