摘要:
A method of optimising the use of radio resources in a mobile radio communication system during a combinational multimedia session involving circuit switched and packet switched sessions between user terminals, the method comprising: disabling an in-sequence delivery option of packets between radio network control nodes of the radio access network(s) serving the user terminals for said packet switched session.
摘要:
A radio access network node (24) comprises protocol data unit (PDU) formation logic (36); a PDU buffer (38); a concatenation timer (40); and a buffer readout mechanism (39). The protocol data unit (PDU) formation logic (36) serves, e.g., for segmenting incoming service data units (SDUs) to form protocol data unit (PDUs). The PDU buffer (38) stores one or more PDUs. The buffer readout mechanism (39) controls readout of contents of the PDU buffer (38). For example, when contents of a PDU in the PDU buffer (38) has not reach a predetermined fill level, the buffer readout mechanism (39) uses the concatenation timer for determining a delay for readout of the PDU from the PDU buffer (38). The delay provides opportunity for at least a portion of a yet-arrived SDU to be included in the PDU prior to readout of the PDU from the PDU buffer (38), and thereby reduce padding in an outgoing PDU.
摘要:
The present invention relates to a transmitter and a receiver for a mobile communication system. The basic idea of the present invention is to target the number of HARQ transmissions that is required to be able to decode the transmitted data successfully and to only transmit HARQ feedback information if the decoding result differs from an expected result, wherein the expected result is based on the targeted number of required HARQ transmissions.
摘要:
The present invention relates to a transmitter and a receiver for a mobile communication system. The basic idea of the present invention is to target the number of HARQ transmissions that is required to be able to decode the transmitted data successfully and to only transmit HARQ feedback information if the decoding result differs from an expected result, wherein the expected result is based on the targeted number of required HARQ transmissions.
摘要:
A method and an arrangement for obtaining efficient radio resource utilization in a communication network comprising a first communication network entity (10), a second communication network entity (15) connected to said first communication network over a communication interface and one or more user equipments (18) transmitting data to said second communication network entity (15) over a radio interface. The user equipments (18) perform the step of autonomously selecting a hybrid automatic retransmission request (HARQ) operating point in order to efficiently deliver transmitted data.
摘要:
In a method of improved media frame transmission in a communication network. Initially a plurality of “original” or regular media frames are provided for transmission. According to the invention, robust representations of the provided regular media frames are generated and stored locally. Subsequently, one or more of the regular media frames is/are transmitted. The invention detects an indication of a loss of a transmitted media frame, and the idea is to transmit, in response to a detected frame loss, a stored robust representation of the lost media frame and/or a stored robust representation of a subsequent, not yet transmitted, media frame to increase the media quality.
摘要:
User equipment in a wireless communication system monitors scheduling information and locally detects a change in link data rate of the uplink channel based on the monitored scheduling information. In this way, a change in link data rate can be detected directly without significant delay. This direct or early detection of a rate change is then combined with an appropriate system reaction. The information of the detected change in link data rate is preferably utilized for adapting the application data rate of an IP application running in the user equipment. As an alternative, or as a complement, data packets are classified based on relative importance and selected for transfer of information over the uplink channel based on the classification of data packets and in dependence on the detected change in link data rate.
摘要:
The present invention relates to a method and an arrangement for resource allocation in a packet transmission network including at least one link (19). According to the invention the following steps are performed: Determining link resource status. If link congestion is determined then: determining if it is possible to allocate more link capacity, allocating more link capacity when it is possible to allocate more link capacity, and alleviating link congestion using Active Queue Management when it is not possible to allocate more link capacity.
摘要:
User equipment in a wireless communication system monitors scheduling information and locally detects a change in link data rate of the uplink channel based on the monitored scheduling information. In this way, a change in link data rate can be detected directly without significant delay. This direct or early detection of a rate change is then combined with an appropriate system reaction. The information of the detected change in link data rate is preferably utilized for adapting the application data rate of an IP application running in the user equipment. As an alternative, or as a complement, data packets are classified based on relative importance and selected for transfer of information over the uplink channel based on the classification of data packets and in dependence on the detected change in link data rate.
摘要:
A method of optimizing the timing offsets with which data frames are transmitted over the Iur/Iub interfaces of a UMTS Terrestrial Radio Access Network, UTRAN. The method comprises, for a given Iur/Iub interface or set of Iur/Iub interfaces over which identical user plane data is to be sent, defining a duration of a data frame receiving window for use by the receiving node(s), transmitting data frames from a sending node with an initial timing offset sufficient to ensure a likelihood that the frames will be received at the or each receiving node within the defined receiving window, reducing the timing offset at the sending node in a stepwise manner, and adjusting the timing offset at the sending node in response to the receipt of late Time of Arrival error reports at the sending node. In a second embodiment, the frame synchronisation of frames corresponding to speech services and data services is carried out by delaying the frames corresponding to speech services a fixed delay and the frames corresponding to data services a variable delay based on a received time of arrival feedback.