Abstract:
A charging circuit includes an interface connector that may be coupled to a power adapter that provides an input voltage, and a buck-boost charging circuit that receives the input voltage and may be coupled to and may provide an output signal to a battery having a charging voltage. For a given input voltage and a given charging voltage, the buck-boost charging circuit operates in one of a group of modes based on a control signal, where the group of modes comprises: a buck mode, a boost mode and a buck-boost mode. In particular, the charging circuit includes control logic that generates the control signal based on the charging voltage and the input voltage. Thus, the buck-boost charging circuit may operate over a continuous range of input voltages and charging voltages.
Abstract:
During operation, the DC converter and a DC battery charger controller in a charger circuit transitions from a first error signal to a second error signal for use in charging a battery, wherein the first error signal and the second error signal, respectively, correspond to feedback sources in a plurality of feedback sources with a plurality of feedback sources. Then, the DC converter and a DC battery charger controller selects a gain and an impedance to ground of a damping circuit based on the selected second error signal, where the damping circuit applies the gain and the impedance to ground to the second error signal. Moreover, the DC converter and a DC battery charger controller selects one or more clamping voltages of a voltage-clamping circuit based on the selected second error signal, where the voltage-clamping circuit applies the one or more clamping voltages to an output from the damping circuit.
Abstract:
A switched-mode power supply with reduced electromagnetic interference (EMI) is described. This switched-mode power supply includes a modulation circuit that continuously frequency modulates a control signal over a bandwidth associated with a spread-spectrum modulation signal. By frequency modulating the control signal in the switched-mode power supply, spectral content associated with a modulated switching signal is spread evenly over the bandwidth, thereby reducing the EMI.
Abstract:
One embodiment of a display backlight driver integrated circuit can be configured for operation in at least two different ways. A first method transfers data from an EEPROM to hardware registers prior to regular operation. A second method also transfers data from an EEPROM to registers. However, hardware registers can be overwritten with data accepted from a control bus, prior to regular operation. A keyboard driver IC can detect the presence or absence of a cable to an LED. If the cable is absent, the driver IC will not supply power for the LED. One embodiment of a keyboard and display backlight control system can be configured to allow substantially independent operation.
Abstract:
One embodiment of a display backlight driver integrated circuit can be configured for operation in at least two different ways. A first method transfers data from an EEPROM to hardware registers prior to regular operation. A second method also transfers data from an EEPROM to registers. However, hardware registers can be overwritten with data accepted from a control bus, prior to regular operation. A keyboard driver IC can detect the presence or absence of a cable to an LED. If the cable is absent, the driver IC will not supply power for the LED. One embodiment of a keyboard and display backlight control system can be configured to allow substantially independent operation.