PATH TRACING APPLIED TO INTERNET PROTOCOL VERSION 6 (IPV6) FABRICS

    公开(公告)号:US20250150376A1

    公开(公告)日:2025-05-08

    申请号:US18758755

    申请日:2024-06-28

    Abstract: Systems and techniques are provided for path tracing. For example, a process can include establishing a path tracing session associated with path tracing (PT) probe packets from a PT source node of an IPv6 network fabric. A PT probe packet can be received with a first IPv6 Destination Options Header with Path Tracing Option (DOH-PT) header that encodes path tracing information of the PT source node and indicates respective path tracing information for each PT midpoint node along a path from the PT source node to a PT sink node of the IPv6 network fabric. The received PT probe packet can be updated to include a second DOH-PT header that encodes path tracing information of the PT sink node. An updated PT probe packet includes the first and second DOH-PT headers and can be encapsulated with an additional IPv6 header corresponding to forwarding information of a collector node.

    NETWORK PATH DETECTION AND MONITORING

    公开(公告)号:US20250062984A1

    公开(公告)日:2025-02-20

    申请号:US18934224

    申请日:2024-10-31

    Abstract: This disclosure describes techniques for detecting and monitoring paths in a network. The techniques include causing a source node to generate probe packets to traverse a multi-protocol label switching (MPLS) network, for instance. In some examples, the probe packets include entropy values that correspond to individual equal-cost multi-path (ECMP) paths of the network. The probe packets may be received at an SDN controller from a sink node after traversing the network. Analysis of the probe packets allow path discovery and mapping of the entropy values to ECMP paths. The mapping of discovered paths may be used for optimization of network monitoring activities, including second subsequent probe packets over particular ECMP paths based on the mapped entropy values.

    Network path detection and monitoring

    公开(公告)号:US12206573B2

    公开(公告)日:2025-01-21

    申请号:US17691016

    申请日:2022-03-09

    Abstract: This disclosure describes techniques for detecting and monitoring paths in a network. The techniques include causing a source node to generate probe packets to traverse a multi-protocol label switching (MPLS) network, for instance. In some examples, the probe packets include entropy values that correspond to individual equal-cost multi-path (ECMP) paths of the network. The probe packets may be received at an SDN controller from a sink node after traversing the network. Analysis of the probe packets allow path discovery and mapping of the entropy values to ECMP paths. The mapping of discovered paths may be used for optimization of network monitoring activities, including second subsequent probe packets over particular ECMP paths based on the mapped entropy values.

    Suspending and resuming continuous queries over data streams

    公开(公告)号:US09910896B2

    公开(公告)日:2018-03-06

    申请号:US13839148

    申请日:2013-03-15

    CPC classification number: G06F17/30516 G06F17/30492 G06F17/30545

    Abstract: In an embodiment, a method comprises processing an input data stream as the data stream is streamed and producing a derived stream therefrom; storing the input data stream in an input archive; suspending processing of the input data stream; subsequent to suspending processing, resuming processing of the input data stream, wherein resuming comprises: storing newly received data in the input data stream in a buffer, as the input data stream is streamed; determining a first timestamp; determining a second timestamp; searching the input archive to find a data item that matches the first timestamp of the last processed data item; processing data in the input archive having timestamps that are greater than the first timestamp until arriving at data with a third timestamp that is greater than the second timestamp; processing the input data stream from the buffer; continuing processing the input data stream as the input stream is streamed.

Patent Agency Ranking