Abstract:
Methods and systems are provided for traction detection and control of a self-driving vehicle. The self-driving vehicle has drive motors that drive drive-wheels according to a drive-motor speed. Traction detection and control can be obtained by measuring the vehicle speed with a sensor such as a LiDAR or video camera, and measuring the wheel speed of the drive wheels with a sensor such as a rotary encoder. The difference between the measured vehicle speed and the measured wheel speeds can be used to determine if a loss of traction has occurred in any of the wheels. If a loss of traction is detected, then a recovery strategy can be selected from a list of recovery strategies in order to reduce the effects of the loss of traction.
Abstract:
Systems and methods for obstacle avoidance with a self-driving vehicle are provided. The system comprises a processor connected to the self-driving vehicle and a sensor in communication with the processor. The sensor is configured to detect objects. The processor is configured to receive a measurement of the self-driving vehicle's speed, and define a sensor region based on the speed. The processor can determine that an object detected by the sensor is within the sensor region, and then initiate a fail-safe routine. The sensor region may be defined based on a range parameter. The sensor region may be defined based on the stopping distance of the vehicle. The sensor region may be redefined when the vehicle's speed changes.
Abstract:
Systems, methods and apparatus are provided for handling operational constraints for unmanned vehicles. The system includes: a plurality of mobile unmanned vehicles for deployment in an environment; a computing device connected to the plurality of unmanned vehicles via a network, the computing device storing, in a memory, a plurality of operational constraints; each operational constraint including (i) a type identifier, (ii) an indication of a region of the environment, and (iii) a property defining a constraint on the operation of the unmanned vehicles within the region. The computing device is configured to: receive a request from one of the mobile unmanned vehicles, the request identifying an operational constraint; responsive to receiving the request, retrieve an operational constraint from the memory based on the request; and send the retrieved operational constraint to the one of the mobile unmanned vehicles.
Abstract:
Systems, methods and apparatus are provided for handling operational constraints for unmanned vehicles. The system includes: a plurality of mobile unmanned vehicles for deployment in an environment; a computing device connected to the plurality of unmanned vehicles via a network, the computing device storing, in a memory, a plurality of operational constraints; each operational constraint including (i) a type identifier, (ii) an indication of a region of the environment, and (iii) a property defining a constraint on the operation of the unmanned vehicles within the region. The computing device is configured to: receive a request from one of the mobile unmanned vehicles, the request identifying an operational constraint; responsive to receiving the request, retrieve an operational constraint from the memory based on the request; and send the retrieved operational constraint to the one of the mobile unmanned vehicles.
Abstract:
A system for path control for a mobile unmanned vehicle in an environment is provided. The system includes: a sensor connected to the mobile unmanned vehicle; the mobile unmanned vehicle configured to initiate a first fail-safe routine responsive to detection of an object in a first sensor region adjacent to the sensor; and a processor connected to the mobile unmanned vehicle. The processor is configured to: generate a current path based on a map of the environment; based on the current path, issue velocity commands to cause the mobile unmanned vehicle to execute the current path; responsive to detection of an obstacle in a second sensor region, initiate a second fail-safe routine in the mobile unmanned vehicle to avoid entry of the obstacle into the first sensor region and initiation of the first fail-safe routine.
Abstract:
Systems, methods and apparatus are provided for controlling self-driving vehicles. The system comprises: a processor, a memory storing operational constraints for a self-driving vehicle, and a communications interface. A plurality of path portions are assembled at the system to define an area in a physical space in which the self-driving vehicle is to navigate, each of the plurality of path portions associated with a respective given subset of operational constraints stored in the memory. The system provides, to the self-driving vehicle, respective given subsets of the operational constraints of the plurality of path portions that define the area, and associated positions of each of the plurality of path portions in the physical space.