Abstract:
A method of communicating information includes generating a photon pulse using an entangled photon generator. The photon pulse includes a photon pulse state and is temporally positioned within a photon pulse time slot. When the photon pulse is in a populated photon pulse state, it includes first and second entangled photons and the entangled photon generator outputs the first entangled photon into a first photon pathway optically coupled to an output end photon detector unit, and the second entangled photon into a second photon pathway, optically coupled to a receiving end photon detector unit. The method also includes determining the photon pulse state of the photon pulse using the output end photon detector unit, which outputs a signal regarding the photon pulse state of the photon pulse into a signal pathway to provide the receiving end photon detector unit with information regarding the photon pulse state of the photon pulse.
Abstract:
A quasi-single-mode optical fiber with a large effective area is disclosed. The quasi-single-mode fiber has a core with a radius greater than 5 μm, and a cladding section configured to support a fundamental mode and a higher-order mode. The fundamental mode has an effective area greater than 170 μm2 and an attenuation of no greater than 0.17 dB/km at a wavelength of 1530 nm. The higher-order mode has an attenuation of at least 1.0 dB/km at the wavelength of 1530 nm. The quasi-single-mode optical fiber has a bending loss of less than 0.02 dB/turn for a bend diameter of 60 mm for a wavelength of 1625 nm.
Abstract:
Systems and methods for ambient-light reduction in display systems with OLED or LCD based displays are disclosed. The base display is interfaced with an ambient-light-reducing (ALR) structure to form the display system. The ALR structure includes an ALR component. The ALR component can be a photochromic component or a fixed neutral-density component. The ALR structure attenuates incoming ambient light as well as outgoing redirected ambient light that is generated within the base display and is then emitted from the display system into the ambient environment. This increases the ambient contrast relative to that of the base display alone.
Abstract:
Optical transmission systems and methods are disclosed that utilize a QSM optical fiber with a large effective area and that supports only two modes, namely the fundamental mode and one higher-order mode. The optical transmission system includes a transmitter and a receiver optically coupled by an optical fiber link that includes at least one section of the QSM optical fiber. Transmission over optical fiber link gives rise to MPI, which is mitigated using a digital signal processor. The QSM optical fiber is designed to have an amount of DMA that allows for the digital signal processor to have reduced complexity as reflected by a reduced number of filter taps as compared to if the DMA were zero.