摘要:
A fuel cell system comprises a fuel cell stack, a cell voltage monitor, a hydrogen tank, a hydrogen supply channel, an ejector, a hydrogen off-gas channel, a purge valve, a compressor, an air supply channel, a pressure control unit for controlling air pressure, a pilot pressure input channel branching off from the air supply channel and inputting the air pressure to the ejector as pilot pressure, and a control unit for controlling the purge valve and the pressure control unit. The ejector includes a pressure control mechanism which increases the ejector's secondary-side pressure by increasing the area of the nozzle's ejecting hole when the pilot pressure input from the pilot pressure input channel rises. When electricity generation status of the fuel cell stack is judged to be poor, the control unit opens the purge valve after raising the air pressure and the pilot pressure by using the pressure control unit.
摘要:
A fuel cell system is provided which estimates a water content in a fuel cell based on a predetermined map using an integrated value of electric current generated by the fuel cell (ST4) before power generation is stopped (ST5). When a temperature of the fuel cell has fallen lower than a predetermined value (ST7) after the power generation is stopped (ST5), the fuel cell system determines a dry degree in the fuel cell (ST8) and an anode scavenging period (ST9) based on predetermined maps. Scavenging is performed in an anode in the fuel cell for the anode scavenging period (ST10).
摘要:
A fuel-cell system 1 includes: a fuel cell 13 configured to generate electricity through reaction between hydrogen gas and air; a compressor 12 configured to supply air as a scavenging gas to a reactant gas path 13a of the fuel cell 13; a control part 18 configured to control an amount of air supplied from the compressor 12 to the fuel cell 13 to perform scavenging of the fuel cell 13; and pressure sensors P1 and P2 configured to monitor a pressure drop in the reactant gas path 13a of the fuel cell 13. The control part 18 controls an amount of supplied air so as to keep the pressure drop in the reactant gas path 13a substantially constant when the fuel cell 13 is scavenged. With this configuration, residual water can be suitably purged from the fuel cell while energy consumption is suppressed.
摘要:
In a fuel cell system including a fuel cell supplied with reaction gases for generating an electric power, and a combustion heater supplied with the reaction gases for heating the fuel cell during warming-up, an electric discharging circuit is provided to discharge an electric current from the fuel cell supplied with the reaction gases to decrease a voltage difference applied to the membrane sandwiched between the anode and cathode during the warming-up. The combustion heater is connected in series or in parallel with the fuel cell system.
摘要:
A fuel cell system enables time required for purging to be reduced without a major increase in discharge gas concentration at a time of purging. It comprises a fuel cell; a fuel gas supply path for supplying the fuel gas to an anode; an oxidizing gas supply path for supplying an oxidizing gas to a cathode; a fuel gas circulating path for returning an unreacted fuel gas to an anode inlet side; a dilution box for diluting the fuel gas by the oxidizing gas and for discharging it to outside; and a fuel gas discharge path connecting the fuel gas circulating path and a dilution box discharge gas inlet. A drain valve, a purge valve and an air discharge valve are provided, opening areas of which are different from one another. The drain valve with a smallest opening area is initially opened.
摘要:
A fuel cell system allows suppression of the deterioration of a fuel cell even if a part of a membrane configuring the fuel cell is unavailable for power production. The fuel cell is configured with a membrane, and an anode and a cathode provided so as to sandwich the membrane, and produces electric power from reaction of reactive gases via the membrane when the reactive gases are supplied to the anode and the cathode. The fuel cell system is configured with the fuel cell, an MEA power production effective area calculating means for calculating an area of the membrane surface available for power production, an upper limit power producing current calculating means for controlling the total power production of the fuel cell based on the power production effective area calculated by the MEA power production effective area calculating means, and a current controller.
摘要:
When it is detected that the ignition switch is turned off a short period of time after the ignition switch turned on at the temperature below the freezing point, the charge threshold of a capacitor is changed to a larger charge threshold C for increasing the amount of electrical energy charged in the capacitor based on the charge threshold C. The capacitor is used for performing a scavenging process for a sufficient period of time. At the time of starting operation of the fuel cell system at the temperature below the freezing point the next time, using the electrical energy of the capacitor, a fuel cell is warmed rapidly by a heater or the like to start operation of the fuel cell system.
摘要:
A fuel cell system including: a fuel cell including a fuel gas channel and an oxidant gas channel, which is configured to generate electricity using a fuel gas and an oxidant gas; a diluting unit configured to dilute gas discharged from the fuel gas channel by mixing the discharged gas with a dilution gas which is supplied from an oxidant gas supply unit and passed through and discharged from the fuel cell, and to exhaust the diluted gas to outside; a purge valve configured to purge gas in the fuel gas channel to the diluting unit; a scavenging unit configured to scavenge the fuel gas channel and the oxidant gas channel; and a dilution assist unit configured to supply a dilution assist gas to the diluting unit through an assist passage connected to the diluting unit to assist dilution in the diluting unit, during scavenging by the scavenging unit.
摘要:
A reaction gas is supplied to a cathode side of a fuel cell at a flow rate higher than that for a usual operation of the fuel cell to thaw the fuel cell system at startup in a freezing state of the system when the system has experienced a temperature lower than an operation temperature of an anode off-gas. A thawing state of the system is detected on the basis of at least two of temperatures of the anode off-gas, a cathode off gas, and a radiator liquid of the fuel cell to control supplying the reaction gas to the cathode side at a usual operation flow rate. An actual increase rate of the temperature of the anode off-gas is obtained and an increase rate of the temperature of the anode off-gas is calculated from the self-heating value to be compared to determine the thawing state.
摘要:
A fuel cell system including: a fuel cell which generates electrical power through the reaction of a reaction gas; a reaction gas supply device which supplies the reaction gas to the fuel cell; a cooling device which cools the fuel cell by circulating a coolant through the fuel cell; a fuel cell operating temperature output device which outputs a maximum temperature inside the fuel cell as an operating temperature of the fuel cell; and a fuel cell temperature adjustment device which adjusts a temperature inside the fuel cell so that the operating temperature inside the fuel cell is less than a preset upper temperature limit.