Abstract:
A single finger gesture determination method is disclosed. The single touch gesture determination method includes steps of detecting one or more trigger signals, determining respective categories under a plurality of gesture groups to which the one or more trigger signals belong according to the one or more trigger signals, and deciding a finger gesture represented by the one or more trigger signals according to the determined respective categories under the plurality of gesture groups.
Abstract:
An electronic device of detecting contention of a bidirectional bus for avoiding failing to drive a bidirectional bus due to bus contention includes: an output terminal, an input terminal and a data output unit, a timing comparing controller and a comparing unit. The output terminal is coupled to the bidirectional bus and used for outputting a data output signal to the bidirectional bus. The input terminal is coupled to the output terminal and the bidirectional bus and used for receiving a data reception signal from the bidirectional bus. The data output unit is used for providing the data output signal. The timing comparing controller is used for generating a timing comparison signal according to the data output signal. The comparing unit is used for comparing the data reception signal with the data output signal according to the timing comparison signal to determine a contention state of the bidirectional bus.
Abstract:
A panel control device and an operation method thereof are provided. The panel control device includes a touch controller and a display controller. The display controller drives a touch display panel module to display an image. The touch controller senses a touch event of the touch display panel module. Wherein, the sensing operation of the touch controller is enabled/disabled in accordance with the driving operation of the display controller.
Abstract:
A sensing and driving apparatus suitable for a sensing interface is provided. The sensing and driving apparatus includes a driving module and a sensing unit. The driving module outputs a first reference signal and a second reference signal which have different polarities with each other, and respectively transmits the first reference signal and the second reference signal to a first driving line and a second driving line of the sensing interface so as to generate a first sensing signal during a first period. The sensing unit receives the first sensing signal and detects a change of the first signal so as to generate a sensing result. A sensing and driving method, a touch sensing system and a device using the same are also provided herein.
Abstract:
An object sensing apparatus including an object sensing unit, a signal selecting unit, at least one signal sensing unit, and a control unit is provided. The object sensing unit outputs a plurality of sensing signals. The signal selecting unit selects at least one of the sensing signals as a signal under test and selects at least one of the unselected sensing signals as a reference signal. The signal sensing unit outputs a difference signal according to the signal under test and the reference signal. The control unit determines an object position relative to the object sensing unit according to the difference signal. Additionally, a touch sensing apparatus and a method thereof are also provided.
Abstract:
A single flexible printed circuit (FPC) board for connecting multiple modules including a thin film is provided. The thin film has a first module connecting portion, a second module connecting portion and a third module connecting portion. The first module connecting portion is located on a first side of the thin film. The second module connecting portion and the third module connecting portion are located on a second side of the thin film. The first side is opposite to the second side. At least one first line is disposed between the first module connecting portion and the second module connecting portion. At least one second line is disposed between the first module connecting portion and the third module connecting portion.
Abstract:
A touch sensing system including a touch input interface and a capacitance sensing circuit is provided. The touch input interface includes a plurality of sensing capacitors for outputting a capacitance under test and a reference capacitance. The capacitance sensing circuit includes a first sensing channel, a second sensing channel, and a difference comparing unit. During a first period of the sensing period, the first sensing channel senses the capacitance under test, and the second sensing channel senses the reference capacitance. During a second period of the sensing period, the first sensing channel senses the reference capacitance, and the second sensing channel senses the capacitance under test. The difference comparing unit outputs a difference according to the capacitance under test and the reference capacitance. Additionally, a capacitance sensing method is also provided.
Abstract:
A data transmission method applied in a display, which includes a display panel, is provided. The data transmission method includes the following steps of: providing a host controller and n display drivers, n is a natural number greater than 1; providing a communication link under mobile industry processor interface (MIPI), connecting the host controller to the n display drivers; determining n virtual channel values Vc1-Vcn corresponding to the respective n display drivers; employing the host controller for providing a command with a virtual channel parameter through the communication link under MIPI; when the virtual channel parameter corresponds to an ith virtual channel values Vci, an ith display driver executing corresponding operations in response to the command, while the rest n−1 display drivers ignoring the command, wherein i is a natural number smaller than or equal to n.
Abstract:
The mop has a handle, a holding assembly and a head assembly. The holding assembly is mounted on the handle and has a sleeve mounted rotatably around the handle. The head assembly is mounted pivotally on the handle and has fiber strips. A user can hold the sleeve when the mop is wrung by a dehydration device. The sleeve will not be driven by the fiber strips or the handle. Therefore, the mop is stably and safely held and the mop can be more efficient to use.
Abstract:
A touch panel and a display apparatus are provided. The touch panel includes a substrate, first sensing lines, second sensing lines, first extending portions, second extending portions, and insulation pads. The first sensing lines are disposed on the substrate in parallel with a first direction. The second sensing lines are disposed on the substrate in parallel with a second direction. The first sensing lines intersect the second sensing lines to define meshes. The first extending portions are connected to the first sensing lines and extended toward the meshes. The second extending portions are connected to the second sensing lines and extended toward the meshes. The first extending portions and the second extending portions are distributed next to each other in the meshes. The insulation pads are disposed at where the first sensing lines intersect the second sensing lines to insulate the first sensing lines from the second sensing lines.