Abstract:
A touch panel and a display apparatus are provided. The touch panel includes a substrate, first sensing lines, second sensing lines, first extending portions, second extending portions, and insulation pads. The first sensing lines are disposed on the substrate in parallel with a first direction. The second sensing lines are disposed on the substrate in parallel with a second direction. The first sensing lines intersect the second sensing lines to define meshes. The first extending portions are connected to the first sensing lines and extended toward the meshes. The second extending portions are connected to the second sensing lines and extended toward the meshes. The first extending portions and the second extending portions are distributed next to each other in the meshes. The insulation pads are disposed at where the first sensing lines intersect the second sensing lines to insulate the first sensing lines from the second sensing lines.
Abstract:
A sensing and driving apparatus suitable for a sensing interface is provided. The sensing and driving apparatus includes a driving module and a sensing unit. The driving module outputs a first reference signal and a second reference signal which have different polarities with each other, and respectively transmits the first reference signal and the second reference signal to a first driving line and a second driving line of the sensing interface so as to generate a first sensing signal during a first period. The sensing unit receives the first sensing signal and detects a change of the first signal so as to generate a sensing result. A sensing and driving method, a touch sensing system and a device using the same are also provided herein.
Abstract:
A touch sensing system including a touch interface, at least one sensing unit, and a switching unit is provided. The sensing unit is coupled to the touch interface. The touch sensing system is switched to a first sensing mode or a second sensing mode by the switching unit according to a control signal. When the touch sensing system is in the first sensing mode, the sensing unit senses a first sensing signal and a second sensing signal of the touch interface. On the other hand, when the touch sensing system is in the second sensing mode, the sensing unit senses the first sensing signal according to a driving signal. An electronic touch apparatus and a touch sensing method are also provided.
Abstract:
A single flexible printed circuit (FPC) board for connecting multiple modules including a thin film is provided. The thin film has a first module connecting portion, a second module connecting portion and a third module connecting portion. The first module connecting portion is located on a first side of the thin film. The second module connecting portion and the third module connecting portion are located on a second side of the thin film. The first side is opposite to the second side. At least one first line is disposed between the first module connecting portion and the second module connecting portion. At least one second line is disposed between the first module connecting portion and the third module connecting portion.
Abstract:
A single-finger and multi-touch gesture determination method is disclosed. The single touch and multi-touch gesture determination method includes steps of: for each of one or more touch points, judging a respective category under a first group to which the touch point belongs, according to an initial position of the touch point; for each of the one or more touch points, judging a respective category under a second group to which the touch point belongs, according to a moving pattern of the touch point, wherein the moving pattern is respectively defined in the judged category under the first group to which the touch point belongs; and determining a gesture represented by the one or more touch points according to the judged categories under the second group respectively to which the one or more touch points belong.
Abstract:
A single flexible printed circuit (FPC) board for connecting multiple modules including a thin film is provided. The thin film has a first module connecting portion, a second module connecting portion and a third module connecting portion. The first module connecting portion is located on a first side of the thin film. The second module connecting portion and the third module connecting portion are located on a second side of the thin film. The first side is opposite to the second side. At least one first line is disposed between the first module connecting portion and the second module connecting portion. At least one second line is disposed between the first module connecting portion and the third module connecting portion.
Abstract:
A touch sensing system including a touch input interface and a capacitance sensing circuit is provided. The touch input interface includes a plurality of sensing capacitors for outputting a capacitance under test and a reference capacitance. The capacitance sensing circuit includes a first sensing channel, a second sensing channel, and a difference comparing unit. During a first period of the sensing period, the first sensing channel senses the capacitance under test, and the second sensing channel senses the reference capacitance. During a second period of the sensing period, the first sensing channel senses the reference capacitance, and the second sensing channel senses the capacitance under test. The difference comparing unit outputs a difference according to the capacitance under test and the reference capacitance. Additionally, a capacitance sensing method is also provided.
Abstract:
A touch panel and a display apparatus are provided. The touch panel includes a substrate, first sensing lines, second sensing lines, first extending portions, second extending portions, and insulation pads. The first sensing lines are disposed on the substrate in parallel with a first direction. The second sensing lines are disposed on the substrate in parallel with a second direction. The first sensing lines intersect the second sensing lines to define meshes. The first extending portions are connected to the first sensing lines and extended toward the meshes. The second extending portions are connected to the second sensing lines and extended toward the meshes. The first extending portions and the second extending portions are distributed next to each other in the meshes. The insulation pads are disposed at where the first sensing lines intersect the second sensing lines to insulate the first sensing lines from the second sensing lines.
Abstract:
A touch sensing system including a touch interface and a control unit is provided. The touch interface senses at least one edge change of at least one region on the touch interface corresponding to at least one object. The control unit defines a touch gesture corresponding to the object according to the edge change so as to perform a touch operation corresponding to the touch gesture. Additionally, a touch sensing method is also provided. In the touch sensing method, whether the touch gesture is a moving gesture, a rotation gesture, a flip gesture, a zoom-in gesture, or a zoom-out gesture is determined according to any change of a touch region.
Abstract:
A touch sensing system which includes a touch input interface and a capacitance sensing circuit is provided. The touch input interface includes a plurality of sensing capacitors which output at least one waveform under test and at least one reference waveform. The capacitance sensing circuit includes a difference comparing unit. The difference comparing unit receives the waveform under test and the reference waveform and outputs a differential signal according to at least one positive edge difference and at least one negative edge difference between the waveform under test and the reference waveform. Furthermore, a capacitance sensing method is also provided.