Abstract:
A compatible optical pickup device includes a single light source to emit a light having a wavelength longer than 650 nm, an objective lens having a near axis area, a ring type annular lens area, and a far axis area to focus the light to form light spots suitable for a first relatively thin optical disk and a second relatively thick optical disk to form a first light spot having an FWHM (full width at half maximum) of 0.72 μm or less for the first optical disk and a second light spot having an FWHM of 0.8 μm or more for the second optical disk, an optical path changer to change a proceeding path of incident light, and a photodetector to receive light reflected by the optical disk and having passed through the objective lens and the optical path changer and to detect an information signal and/or an error signal.
Abstract:
An optical pickup compatible with recording media having different formats, the optical pickup includes a light device module having a first light beam source and a second light beam source to emit corresponding first and second light beams having different wavelengths, a hologram light coupler to separately guide the first and second light beams along the same optical path such that the first and second light beams go toward a corresponding one of the recording media, an optical path changing element to selectively alter the optical path of an incident light beam, and an objective lens disposed on an optical path between said optical path changing element the corresponding one of the recording media to focus the first and second light beam on the corresponding one of the recording media, and a photodetector to receive the first and second light beam incident from said optical path changing element.
Abstract:
An optical pickup compatible with recording media having different formats, the optical pickup includes a light device module having a first light beam source and a second light beam source to emit corresponding first and second light beams having different wavelengths, a hologram light coupler to separately guide the first and second light beams along the same optical path such that the first and second light beams go toward a corresponding one of the recording media, an optical path changing element to selectively alter the optical path of an incident light beam, and an objective lens disposed on an optical path between said optical path changing element the corresponding one of the recording media to focus the first and second light beam on the corresponding one of the recording media, and a photodetector to receive the first and second light beam incident from said optical path changing element.
Abstract:
A lens device which can be used as an objective lens in an optical pickup apparatus includes an objective lens provided along a light path facing a disc and having a predetermined effective diameter, and light controlling means provided along the light path for controlling the light in an intermediate region between near and far axes of an incident light beam, thus providing a simplified and inexpensive device for using discs of differing thickness in a single disc drive, by reducing the spherical aberration effect.
Abstract:
A recording/reproducing apparatus having an optical pickup device which is efficient in light use having little spherical aberration. The recording and/or reproducing apparatus includes an optical pickup having an objective lens, disposed opposite a disk, having a light passing region divided into central, intermediate and periphery regions corresponding to a near axis area, an intermediate axis area and a far axis area of incident light, where the curvature of the central and peripheral regions is optimized for a thin disk and that of the intermediate region is optimized for a thick disk, a light source irradiating light toward a disk through the objective lens; a photo detector for detecting light reflected from the disk, and a beam splitter, disposed between the objective lens and the light source, for transmitting light from the light source toward the objective lens and for diffracting light reflected from the disks toward the photo detector; and a processing unit to process an information signal to control the incident light generated by the light source, and to process the detected light from the photodetector. Therefore, the optical pickup device can be used for both compact disks (CDs) that are thick using light beam passing the near and intermediate regions of said objective lens, and digital video disks (DVDs) that are thin using light beam passing the near and far axis regions of said objective lens, and detect signals without picking up noise regardless of the thickness of the disk.
Abstract:
A projection-type image display apparatus having a structure adapted so that the efficiency of the use of light and resolving power thereof can be enhanced. The projection-type image display apparatus includes a light source; a color separation unit separating incident rays according to predetermined wavelengths, and directing the separated rays at different angles; a lens array dividing the rays separated by the color separation unit into predetermined pixels; a driving portion driving the lens array to change the proceeding paths of the color rays; a polarizing beam splitter changing a proceeding path of incident rays depending on a direction of polarization; a reflection-type display device producing a color image using the rays entering via the polarizing beam splitter, and reflecting the color image toward the polarizing beam splitter; and a projection lens unit magnifying and projecting an incident image onto a screen. In addition, the projection-type image display apparatus may comprise. Alternative designs include a transmission-type display device in place of the reflection-type display device and a deflector changing the proceeding paths of the individual color rays separated by the color separation unit instead of the driving portion.
Abstract:
A semiconductor laser for generating a laser beam and an optical pickup for recording/reproducing information using the semiconductor laser as an optical source are provided. The semiconductor laser includes an aperture member on an emitting end thereof to perform high-density memory recording/reproducing through the reduction of an optical spot. The aperture has a hole whose diameter is smaller than the width of the active region of the semiconductor laser, to thereby restrictively emit the laser beam via the hole so that the optical spot formed on an optical disk is reduced. Thus, high-density memory recording/reproducing, which is useful for miniaturized information processors, can be realized.
Abstract:
A high-density focusing objective lens having a high numerical aperture (NA), which can be easily manufactured by an existing technique, and an optical pickup using the objective lens for high-density recording. The objective lens includes a first transmitting portion placed at a relatively near-axis region from the optical axis to divergently transmit an incident light beam; a first reflecting portion to divergently reflect the incident light beam, the first reflecting portion faces the first transmitting portion; a second reflecting portion, formed at a relatively far-axis region around the first transmitting portion that focuses and reflects the light reflected from the first reflecting portion; and a second transmitting portion, formed at a relatively far-axis region around the first reflecting portion, that refracts and transmits the light beam focused by the second reflecting portion as a peripheral light beam, wherein the maximum angle &agr; between the optical axis and the peripheral light beam satisfies the condition of 30° ≦&agr;≦65°. The optical pickup further includes the previously mentioned objective lens as a second objective lens, which is optionally placed into the optical path between a first objective lens and an optical medium. As a result, the NA of the objective lens unit can be increased up to 0.85 while the working distance d2 is maintained to be 0.2 mm.
Abstract:
An optical pickup using a light-emitting diode (LED), which is capable of forming a light spot of an appropriate size for high-density recording/reproduction. The optical pickup includes a light-emitting diode (LED) to generate and emit light; a condensing unit to condense the light emitted from the LED; an optical filter to selectively transmit a predetermined wavelength of the light emitted from the LED; a spatial filter having a pin-hole, to limit a transmission range of the light condensed by the condensing unit; and a collimating lens to condense the divergent light passed through the spatial filter to form a parallel light. The parallel light is directed by a beam splitter toward an objective lens which focuses the parallel light on an optical disk. The light reflected from the optical disk is received by a photodetector.
Abstract:
An optical pickup device which is efficient in light use having little spherical aberration. The optical pickup device of an optical pickup includes an objective lens, disposed opposite a disk, having a light passing region divided into central, intermediate and periphery regions corresponding to a near axis area, an intermediate axis area and a far axis area of incident light, where the curvature of the central and peripheral regions is optimized for a thin disk and that of the intermediate region is optimized for a thick disk; a light source irradiating light toward a disk through the objective lens; a photo detector for detecting light reflected from the disk; and a beam splitter, disposed between the objective lens and the light source, for transmitting light from the light source toward the objective lens and for diffracting light reflected from the disks toward the photo detector. Therefore, the optical pickup device can be used for both compact disks (CDs) that are thick using light beam passing the near and intermediate regions of said objective lens, and digital video disks (DVDS) that are thin using light beam passing the near and far axis regions of said objective lens, and detect signals without picking up noise regardless of the thickness of the disk.