Abstract:
A system and method of modifying a binaural signal using headtracking information. The system calculates a delay, a first filter response, and a second filter response, and applies these to the left and right components of the binaural signal according to the headtracking information. The system may also apply headtracking to parametric binaural signals. In this manner, headtracking may be applied to pre-rendered binaural audio.
Abstract:
In some embodiments, virtualization methods for generating a binaural signal in response to channels of a multi-channel audio signal, which apply a binaural room impulse response (BRIR) to each channel including by using at least one feedback delay network (FDN) to apply a common late reverberation to a downmix of the channels. In some embodiments, input signal channels are processed in a first processing path to apply to each channel a direct response and early reflection portion of a single-channel BRIR for the channel, and the downmix of the channels is processed in a second processing path including at least one FDN which applies the common late reverberation. Typically, the common late reverberation emulates collective macro attributes of late reverberation portions of at least some of the single-channel BRIRs. Other aspects are headphone virtualizers configured to perform any embodiment of the method.
Abstract:
In some embodiments, virtualization methods for generating a binaural signal in response to channels of a multi-channel audio signal, which apply a binaural room impulse response (BRIR) to each channel including by using at least one feedback delay network (FDN) to apply a common late reverberation to a downmix of the channels. In some embodiments, input signal channels are processed in a first processing path to apply to each channel a direct response and early reflection portion of a single-channel BRIR for the channel, and the downmix of the channels is processed in a second processing path including at least one FDN which applies the common late reverberation. Typically, the common late reverberation emulates collective macro attributes of late reverberation portions of at least some of the single-channel BRIRs. Other aspects are headphone virtualizers configured to perform any embodiment of the method.
Abstract:
A system and method of modifying a binaural signal using headtracking information. The system calculates a delay, a first filter response, and a second filter response, and applies these to the left and right components of the binaural signal according to the headtracking information. The system may also apply headtracking to parametric binaural signals. In this manner, headtracking may be applied to pre-rendered binaural audio.
Abstract:
A method for creating an output soundfield signal from an input soundfield signal, the method including the steps of: (a) forming at least one delayed signals from the input soundfield signal, (b) for each of the delayed signals, creating an acoustically transformed delayed signal, by an acoustic transformation process, and (c) combining together the acoustically transformed delayed signals and the input soundfield signal to produce the output soundfield signal.
Abstract:
In some embodiments, virtualization methods for generating a binaural signal in response to channels of a multi-channel audio signal, which apply a binaural room impulse response (BRIR) to each channel including by using at least one feedback delay network (FDN) to apply a common late reverberation to a downmix of the channels. In some embodiments, input signal channels are processed in a first processing path to apply to each channel a direct response and early reflection portion of a single-channel BRIR for the channel, and the downmix of the channels is processed in a second processing path including at least one FDN which applies the common late reverberation. Typically, the common late reverberation emulates collective macro attributes of late reverberation portions of at least some of the single-channel BRIRs. Other aspects are headphone virtualizers configured to perform any embodiment of the method.
Abstract:
Embodiments are described for a method and system of rendering and playing back spatial audio content using a channel-based format. Spatial audio content that is played back through legacy channel-based equipment is transformed into the appropriate channel-based format resulting in the loss of certain positional information within the audio objects and positional metadata comprising the spatial audio content. To retain this information for use in spatial audio equipment even after the audio content is rendered as channel-based audio, certain metadata generated by the spatial audio processor is incorporated into the channel-based data. The channel-based audio can then be sent to a channel-based audio decoder or a spatial audio decoder. The spatial audio decoder processes the metadata to recover at least some positional information that was lost during the down-mix operation by upmixing the channel-based audio content back to the spatial audio content for optimal playback in a spatial audio environment.