Abstract:
An optical fiber ribbon includes: a plurality of optical fibers arranged in parallel; and a tape material covering the plurality of optical fibers into a tape, in which the plurality of optical fibers are coated respectively with translucent color layers of different colors, and in at least two of the plurality of optical fibers, markings for identifying the optical fiber ribbon are provided at a same position in a longitudinal direction of the optical fiber ribbon.
Abstract:
A method for manufacturing an optical fiber ribbon includes: forming a colored layer on to each of a plurality of optical fibers and forming an optical fiber ribbon by curing a connecting material applied to a surface of the colored layer of each of the optical fibers to form connection parts that connect adjacent ones of the optical fibers. Forming the colored layer further includes: applying a coloring agent to the optical fibers and curing the coloring agent such that uncured resin remains on the surface of the colored layer. Forming the optical fiber ribbon further includes: applying the connecting material to the surface with the uncured resin and curing the connecting material and the uncured resin on the surface of the colored layer.
Abstract:
An optical fiber cable includes: a core comprising gathered optical fibers; an inner sheath housing the core; a wire body embedded in the inner sheath; tension members embedded in the inner sheath, wherein the core is interposed between the tension members; a reinforcing sheet that covers the inner sheath; and an outer sheath that covers the reinforcing sheet, wherein in the inner sheath, ti
Abstract:
An optical cable includes: an optical fiber unit where a plurality of optical fibers are wrapped with a wrapping tape; at least three tensile strength members disposed in parallel with and on an outer side of the optical fiber unit at intervals in a circumferential direction; and a sheath that coats the optical fiber unit and the tensile strength members and that is disposed between the optical fiber unit and the tensile strength members. An inner wall surface of the sheath formed between the optical fiber unit and the tensile strength members protrudes toward a cable center in comparison with an inner wall surface of the sheath where none of the tensile strength members are disposed. A portion of the wrapping tape disposed on the inner wall surface that protrudes toward the cable center is depressed toward the cable center.
Abstract:
An optical fiber unit includes: a plurality of optical fibers; and at least two binding materials that bind the plurality of optical fibers. The two binding materials are wound around the plurality of optical fibers in an SZ shape and adhered to each other at reversed portions of the SZ shape to form an adhesive part. The adhesive part extends along a longitudinal direction where the optical fiber unit extends, and 0.15≤L/(P/2)≤0.8 is satisfied where L is a length of the adhesive part in the longitudinal direction and P is a binding pitch of the two binding materials in the longitudinal direction.
Abstract:
An optical fiber unit includes a plurality of optical fibers; and two binding materials that bind the optical fibers. The two binding materials are wound around the optical fibers in an SZ shape, and are adhered to each other at respective reversed portions that form an adhesive part. The adhesive part has a plurality of intersection points of center lines of the two binding materials.
Abstract:
An optical fiber ribbon is formed by connecting a plurality of optical fiber colored core wires to each other with a connector formed of a UV curable resin. Each of the optical fiber colored core wires includes: a bare optical fiber; a primary layer that comprises a UV curable resin that covers the bare optical fiber; a secondary layer that comprises a UV curable resin that covers the primary layer; and a colored layer disposed outside the secondary layer and that comprises a colored UV curable resin. The primary layer has a Young's modulus that is greater than or equal to 75% of a saturated Young's modulus of the primary layer.
Abstract:
An optical fiber colored core wire includes: a bare optical fiber; a primary layer that comprises a UV curable resin that covers the bare optical fiber; a secondary layer that comprises a UV curable resin that covers the primary layer; and a colored layer disposed outside the secondary layer and that comprises a colored UV curable resin. The primary layer has a Young's modulus that is greater than or equal to 70% of a saturated Young's modulus of the primary layer.
Abstract:
An inspection device of an optical fiber unit, including a plurality of binding materials wound in an SZ shape on a plurality of optical fibers, includes: a measurement sensor that measures a width of the optical fiber units in a first direction orthogonal to a longitudinal direction in which the optical fiber unit extends; and a determination circuit that determines a presence or an absence of an abnormality in a binding state, based on a measurement result of the measurement sensor.
Abstract:
An optical cable includes: an optical fiber unit where a plurality of optical fibers are wrapped with a wrapping tape; at least three tensile strength members disposed in parallel with and on an outer side of the optical fiber unit at intervals in a circumferential direction; and a sheath that coats the optical fiber unit and the tensile strength members and that is disposed between the optical fiber unit and the tensile strength members. An inner wall surface of the sheath formed between the optical fiber unit and the tensile strength members protrudes toward a cable center in comparison with an inner wall surface of the sheath where none of the tensile strength members are disposed. A portion of the wrapping tape disposed on the inner wall surface that protrudes toward the cable center is depressed toward the cable center.