Abstract:
Embodiments allow a station to determine which of a plurality of spatial beams is best suited for communicating with user equipment (UE). Some embodiments overlay spatial multiplexing in a way that provides support for UE without changing existing signaling schemes. In these embodiments, different messages, each designed to provoke different behavior in the UE, are transmitted on different spatial beams. The station then observes the behavior to determine which beam is most suited for the UE. Other embodiments design new signaling schemes to effectively allow UE supporting the schemes to identify which beam is most suited for communication. A single reference signal is scrambled with one of a plurality of indexing sequences, and each is transmitted on a different spatial beam. The UE performs a channel quality estimate for each scrambled signal and determines the index best suited for communication. The index may then be transmitted to the station.
Abstract:
Embodiments of a system and methods for distributed adaptive resource allocation to enhance cell edge throughput are generally described herein. Other embodiments may be described and claimed.
Abstract:
Techniques for efficiently sending side information to support network coding in a wireless network are disclosed. A node may send a subset of packet identifiers (IDs) for received packets in order to reduce signaling overhead in support of network coding operations. In one design, a node obtains a plurality of received packets, with each received packet being generated based on at least one base packet in a set of base packets. The node determines a reduced set of base packet IDs for the received packets. The reduced set may be a subset of an overall set including base packet IDs of all base packets for each of the received packets. The node sends information conveying the reduced set of base packet IDs, receives a network-coded packet generated based on the sent information, and recovers a base packet intended for the node based on the network-coded packet.
Abstract:
Methods, apparatuses and systems for communicating in a wireless network are disclosed. One embodiment includes a method for communication in a wireless network that comprises determining a signal-to-noise ratio (SNR) for channels between a base station, one or more relay stations, and a user and selecting a relay station based on the determined SNRs. Embodiments may also include determining a time sharing parameter and a total transmitting time, transmitting by the base station to the selected relay station for a first duration, and transmitting simultaneously by the base station and relay station using multi-access code for a second duration. The simultaneous transmission may be adapted to be decoded utilizing joint decoding with interference cancellation. Other embodiments are disclosed and claimed.
Abstract:
Mining of websites that in one embodiment includes obtaining web usage data of user sessions of a website, wherein the website has a hierarchical structure with granular levels and has mapping from each webpage of the website into the hierarchical structure, mapping the user sessions to the hierarchical structure of the website resulting in hierarchical user sessions, initiating an edit distance metrics to determine similarity in the hierarchical user sessions, and clustering similar hierarchical user sessions into groups.
Abstract:
Device, system, and method of resource allocation in a wireless network. Embodiments include optimal space-frequency architectures for very high peak rates in wireless systems. For example, an apparatus for wireless communication in a power-limited, very wideband system includes a wireless communication device having a media access controller (MAC) and a physical layer (PHY) that are adapted for a multiple-input-multiple-output (MIMO) orthogonal frequency-division multiple access (OFDMA) communication scheme; a plurality of antennas, operationally coupled to said device, to send and receive wireless communication signals according to the MIMO-OFDMA communication scheme; and a resource allocator, to allocate transmission resources of the device into desired MIMO channels optimized according to at least one of signal-to-noise ratio (SNR), bandwidth, number of users, and signal-to-noise-plus-interference ratio (SINR).
Abstract:
A method to reduce uncertainty bounds of predicting a remaining life of a probe using a set of diverse models is disclosed. The method includes generating an estimated remaining life output by each model of the set of diverse models, aggregating each of the respective estimated remaining life outputs via a fusion model, and in response to the aggregating, predicting the remaining life, the predicting having reduced uncertainty bounds based on the aggregating. The method further includes generating a signal corresponding to the predicted remaining life of the probe.
Abstract:
A system and method for processing healthcare service data is herein disclosed. The system comprising a decision engine in communication with a process manager and a knowledge source. The decision engine receives at least one protocol from the knowledge source that is derived by automated learning and applies the at least one protocol to healthcare service data and transmits a response to the process manager such that the response is indicative of a next workflow step to be taken.
Abstract:
Methods and arrangements for wireless communications are contemplated. Embodiments include transformations, code, state machines or other logic to determine the signal to noise ratios (SNRs) of multiple stations associated with an access point in a wireless network. The embodiments may also include selecting whether one of the stations communicates with the access point by an orthogonal frequency division multiplexing (OFDM) transmission method or a multiple-access joint coding/decoding transmission method, the selecting based upon the SNRs and communicating the selected transmission method to the station of the multiple stations. Some embodiments may include determining an SNR threshold level, selecting the MAC transmission method if the SNR of at least one of the multiple stations is below the SNR threshold level, and selecting the OFDM transmission method if the SNRs of all of the multiple stations are above the SNR threshold level. Other embodiments are described and claimed.
Abstract:
A method to predict remaining life of a target is disclosed. The method includes receiving information regarding a behavior of the target, and identifying from a database at least one piece of equipment having similarities to the target. The method further includes retrieving from the database data prior to an end of the equipment useful life, the data having a relationship to the behavior, evaluating a similarity of the relationship, predicting the remaining life of the target based upon the similarity, and generating a signal corresponding to the predicted remaining equipment life.