摘要:
A method for determining a communication channel location is disclosed. A first subset of a plurality of channel impulse responses is averaged over a first time period to produce a first filtered channel impulse response, and a second subset of the plurality of channel impulse responses is averaged over a second time period to produce a second filtered channel impulse response. The second time period is different from the first time period, and the second subset is different from the first subset. The communication channel location is determined using the first filtered channel impulse response and the second filtered channel impulse response.
摘要:
Systems and methods are provided for processing forward link only (FLO) signals. A device receives a FLO signal, processes a TDM pilot comprising a TDM Pilot 1, a TDM Pilot 2, a WIC, a LIC, a Transition Pilot Channel, and a Positioning Pilot, from the FLO signal, processes an overhead information symbol (OIS) comprising a wide-area OIS and a local-area OIS, from the FLO signal, processes an FDM pilot comprising a wide-area FDM pilot and a local-area FDM pilot, from the FLO signal; and processes data comprising wide-area data and local-area data, from the FLO signal.
摘要:
Apparatus and methods for use in a wireless communication system are disclosed for recovery of timing tracking in a device, such as a wireless transceiver, after decoding errors occur due to incorrect timing tracking. In particular, the disclosed methods and apparatus recover timing tracking by monitoring a decoded signal in the transceiver for decoding errors occurring during a first frame, determining whether a number of decoding errors is greater than a predetermined amount, reacquiring a first pilot channel at a start of a subsequently received second frame when the number of decoding errors is determined to be greater than the predetermined amount, and resetting timing tracking of the transceiver based on the reacquired first pilot channel.
摘要:
A method for characterizing a communication channel is disclosed. A detection window is moved through a channel profile to accumulate tap energies in the channel profile within the detection window into an accumulated energy curve. A peak at a maximum in the accumulated energy curve is determined. A band relative to the accumulated energy curve is defined. A first arriving path (FAP) is determined using a trailing edge found near a second end of a zone in the accumulated energy curve. A leading edge is found near a first end of the zone of the accumulated energy curve. The last arriving path (LAP) is determined using the leading edge. The band defines a zone of the accumulated energy curve at or near the maximum that is within the band.
摘要:
Apparatus and methods for use in a wireless communication system are disclosed for recovery of timing tracking in a device, such as a wireless transceiver, after decoding errors occur due to incorrect timing tracking. In particular, the disclosed methods and apparatus recover timing tracking by monitoring a decoded signal in the transceiver for decoding errors occurring during a first frame, determining whether a number of decoding errors is greater than a predetermined amount, reacquiring a first pilot channel at a start of a subsequently received second frame when the number of decoding errors is determined to be greater than the predetermined amount, and resetting timing tracking of the transceiver based on the reacquired first pilot channel.
摘要:
A method for positioning a collection window for a Fourier transform function is disclosed. A first orthogonal frequency division multiplexing (OFDM) symbol and a second OFDM symbol are received. The first OFDM symbol comprises a plurality of frequency division multiplexed (FDM) symbols. The first OFDM symbol is characterized by at least two of the following: a delay spread, a first arriving path (FAP), or a last arriving path (LAP). A channel location is estimated from a channel impulse response. A point relative to the channel location is selected. A beginning of the collection window is positioned for the second OFDM symbol at the selected point. Alternatively, a point is selected at a first location relative to the channel location using a first algorithm if a delay spread is less than a predetermined length. The selected point is chosen at a second location relative to the channel location using a second algorithm if the delay spread is greater than the predetermined length.
摘要:
A method for characterizing a communication channel is disclosed. A detection window is moved through a channel profile to accumulate tap energies in the channel profile within the detection window into an accumulated energy curve. A peak at a maximum in the accumulated energy curve is determined. A band relative to the accumulated energy curve is defined. A first arriving path (FAP) is determined using a trailing edge found near a second end of a zone in the accumulated energy curve. A leading edge is found near a first end of the zone of the accumulated energy curve. The last arriving path (LAP) is determined using the leading edge. The band defines a zone of the accumulated energy curve at or near the maximum that is within the band.
摘要:
A method for determining a communication channel location is disclosed. A first subset of a plurality of channel impulse responses is averaged over a first time period to produce a first filtered channel impulse response, and a second subset of the plurality of channel impulse responses is averaged over a second time period to produce a second filtered channel impulse response. The second time period is different from the first time period, and the second subset is different from the first subset. The communication channel location is determined using the first filtered channel impulse response and the second filtered channel impulse response.
摘要:
A method for positioning a collection window for a Fourier transform function is disclosed. A first orthogonal frequency division multiplexing (OFDM) symbol and a second OFDM symbol are received. The first OFDM symbol comprises a plurality of frequency division multiplexed (FDM) symbols. The first OFDM symbol is characterized by at least two of the following: a delay spread, a first arriving path (FAP), or a last arriving path (LAP). A channel location is estimated from a channel impulse response. A point relative to the channel location is selected. A beginning of the collection window is positioned for the second OFDM symbol at the selected point. Alternatively, a point is selected at a first location relative to the channel location using a first algorithm if a delay spread is less than a predetermined length. The selected point is chosen at a second location relative to the channel location using a second algorithm if the delay spread is greater than the predetermined length.
摘要:
Systems and methods are provided for transmitting OFDM information via IFFT up-sampling components that transmit data at a higher sampling rate than conventional systems to simplify filter requirements and mitigate leakage between symbols. In one embodiment, an NL point IFFT is performed on a zero inserted set of frequency domain symbols. In another embodiment, the NL point IFFT is further optimized by exploiting the fact that (N−1) L of the frequency domain symbols are zero. This enables an embodiment that consists of a pre-processor that multiplies the input samples by complex phase factors, followed by L point IFFTs.