Methods and apparatus for synchronization of data frames

    公开(公告)号:USRE46884E1

    公开(公告)日:2018-05-29

    申请号:US14971367

    申请日:2015-12-16

    Inventor: Miika Tupala

    Abstract: In accordance with an example embodiment of the present invention, a first bit sequence of a first length is assigned to a first group of signaling bits. Further, a second bit sequence of a second length is assigned to a second group of signaling bits. The first bit sequence is scrambled with a first scrambling sequence, and the second bit sequence is scrambled with a second scrambling sequence different from the first scrambling sequence. A first and a second orthogonal frequency-division multiplexing (OFDM) symbol are assigned to the first and the second scrambled bit sequences respectively, and the first and second orthogonal frequency-division multiplexing (OFDM) symbols are transmitted as synchronization symbols of a data frame. Further, a corresponding method for receiving the data frame, and apparatuses for transmission and reception are disclosed.

    RECEIVER AND METHOD OF RECEIVING
    8.
    发明申请

    公开(公告)号:US20180145864A1

    公开(公告)日:2018-05-24

    申请号:US15572980

    申请日:2016-07-14

    Abstract: A receiver comprises a radio frequency demodulation circuit configured to detect and to recover a received signal. The received signal includes in one or more frames a preamble comprising a plurality of bootstrap OFDM symbols. A first of the bootstrap OFDM symbols has a first time domain structure configured so that a receiver can synchronise to a useful part of the bootstrap OFDM symbols and one or more of the other bootstrap OFDM symbols have at least a second time domain structure and carry layer one signalling data indicating parameters for detecting and recovering payload data carried by the one or more frames. The receiver comprises a detector circuit configured to detect from one or more of the bootstrap OFDM symbols a synchronisation timing and an inverse Fourier transformer configured to convert the temporal length of the bootstrap OFDM symbols or the payload OFDM symbols from the time domain into the frequency domain in accordance with the identified synchronisation timing. The detection circuit includes a first correlator adapted to the first time domain structure of the first bootstrap OFDM symbol and one or more second correlators adapted to the second time domain structure of the one or more other bootstrap OFDM symbols, one or more delay units configured to delay a first correlation result produced by the first correlator and the at least one second correlation result produced by the one or more second correlators so that the correlation results are produced contemporaneously for the first and the one or more other bootstrap OFDM symbols

    Short training field (STF) within wireless communications

    公开(公告)号:US09923748B2

    公开(公告)日:2018-03-20

    申请号:US15011493

    申请日:2016-01-30

    Abstract: A wireless communication device (alternatively, device) includes a processor configured to support communications with other wireless communication device(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processor, among other possible circuitries, components, elements, etc. to support communications with other wireless communication device(s) and to generate and process signals for such communications. Short training field (STF) sequences are designed using a base binary sequence. In some examples, the base binary sequence is specified as [−1, −1 −1 +1 +1 +1 −1, +1, +1 +1 −1 +1 +1 −1, +1]. One STF includes the base binary sequence mapped. Another STF includes the base binary sequence followed by 0 followed by a phased rotated version of the base binary sequence. Another STF includes the base binary sequence followed by 0 followed by an inverted version of the base binary sequence.

Patent Agency Ranking