Abstract:
The systems and methods described herein relate to a dome of a gas turbine assembly configured to suppress pressure pulsations. The systems and methods provide a dome having an aperture configured to surround an injector assembly of a combustor. The dome having a front panel extending radially from the aperture. The systems and methods couple a first cavity to the front panel. The first cavity includes a series of ducts. A first duct of the series of ducts is configured to receive airflow into the first cavity from a compressor and a second set of ducts of the series of ducts and a third duct of the series of ducts are configured to direct airflow to the combustor from the first cavity, wherein the third duct has a larger diameter than the second set of ducts.
Abstract:
Systems and methods for measuring temperature in a gas turbine are disclosed. The method can include directing a first acoustic signal towards a gas path in a turbine; directing a second acoustic signal towards the gas path in the turbine; receiving the first acoustic signal and the second acoustic signal at a downstream gas path location; combining the first acoustic signal and the second acoustic signal to create a combined acoustic signal, where a portion of the first acoustic signal cancels out a portion of the second acoustic signal; and determining a temperature of the gas path based at least in part on the combined acoustic signal.
Abstract:
Systems and methods for measuring temperature in a gas turbine are disclosed. The method can include directing a first acoustic signal and a second acoustic signal towards a gas path in a turbine; receiving the first acoustic signal and the second acoustic signal at a downstream gas path location; combining the first acoustic signal and the second acoustic signal to create a combined acoustic signal, wherein the combined acoustic signal forms at least one of either a signal maxima or a signal minima; and based at least in part on the combined acoustic signal, determining a temperature of the gas path.