Abstract:
A method for additively printing extension segments on workpieces using an additive manufacturing machine includes controlling, with a computing system, an operation of a print head of the machine such that a region of interest of a build plate of the machine is scanned with an electromagnetic radiation beam. Additionally, the method includes receiving, with the computing system, data associated with reflections of the beam off of the build plate as the region interest is scanned. Furthermore, the method includes receiving, with the computing system, data associated with a location of the beam relative to the build plate. Moreover, the method includes determining, with the computing system, a location of a workpiece interface based on the received data. In addition, the method includes controlling, with the computing system, the operation of the print head such that an extension segment is additively printed on the determined workpiece interface.
Abstract:
A method for generating a computer model of a composite component includes generating a surface mesh based on a ply drop region and a ply curved surface and generating node data including a plurality of node points relative to the ply drop region. The method also includes receiving composite data relating to a plurality of composite plies and generating a three dimensional model based on the composite data. The method further includes receiving layup table information and applying the node data, based on the layup table information, to generate a curve through a center of the surface mesh to define a plurality of element sets. The method also includes receiving composite draping data and determining, based on the draping data, where each element set intersects the three dimensional model. The method also includes analyzing an angle deviation of the plies based on the intersection of the element sets.
Abstract:
A system for fabricating a component includes an additive manufacturing device and a computing device. The additive manufacturing device is configured to fabricate a first component by sequentially forming a plurality of superposed layers based upon a nominal digital representation of a second component, which includes a plurality of nominal digital two-dimensional cross-sections, each corresponding to a layer of the first component. The computing device includes a processor, wherein for an ith layer of the first component, the processor is configured to (a) generate a cumulative compensation transformation; (b) apply the cumulative compensation transformation to the nominal digital two-dimensional cross-section corresponding to the ith layer to create an intermediate digital two-dimensional cross-section corresponding to the ith layer; (c) determine a local compensation transformation; and (d) apply the local compensation transformation to the intermediate digital two-dimensional cross-section corresponding to the ith layer.
Abstract:
A system for fabricating a component includes an additive manufacturing device and a computing device. The additive manufacturing device is configured to fabricate a first component by sequentially forming a plurality of superposed layers based upon a nominal digital representation of a second component, which includes a plurality of nominal digital two-dimensional cross-sections, each corresponding to a layer of the first component. The computing device includes a processor, wherein for an ith layer of the first component, the processor is configured to (a) generate a cumulative compensation transformation; (b) apply the cumulative compensation transformation to the nominal digital two-dimensional cross-section corresponding to the ith layer to create an intermediate digital two-dimensional cross-section corresponding to the ith layer; (c) determine a local compensation transformation; and (d) apply the local compensation transformation to the intermediate digital two-dimensional cross-section corresponding to the ith layer.