-
公开(公告)号:US10929754B2
公开(公告)日:2021-02-23
申请号:US16711172
申请日:2019-12-11
Applicant: Google LLC
Inventor: Shuo-yiin Chang , Bo Li , Gabor Simko , Maria Carolina Parada San Martin , Sean Matthew Shannon
Abstract: A method for training an endpointer model includes short-form speech utterances and long-form speech utterances. The method also includes providing a short-form speech utterance as input to a shared neural network, the shared neural network configured to learn shared hidden representations suitable for both voice activity detection (VAD) and end-of-query (EOQ) detection. The method also includes generating, using a VAD classifier, a sequence of predicted VAD labels and determining a VAD loss by comparing the sequence of predicted VAD labels to a corresponding sequence of reference VAD labels. The method also includes, generating, using an EOQ classifier, a sequence of predicted EOQ labels and determining an EOQ loss by comparing the sequence of predicted EOQ labels to a corresponding sequence of reference EOQ labels. The method also includes training, using a cross-entropy criterion, the endpointer model based on the VAD loss and the EOQ loss.
-
公开(公告)号:US12249317B2
公开(公告)日:2025-03-11
申请号:US17929934
申请日:2022-09-06
Applicant: Google LLC
Inventor: Bo Li , Junwen Bai , Yu Zhang , Ankur Bapna , Nikhil Siddhartha , Khe Chai Sim , Tara N. Sainath
IPC: G10L15/16 , G10L15/02 , G10L15/06 , G10L15/187 , G10L15/19
Abstract: A method includes receiving audio features and generating a latent speech representation based on the audio features. The method also includes generating a target quantized vector token and a target token index for a corresponding latent speech representation. The method also includes generating a contrastive context vector for a corresponding unmasked or masked latent speech representation and deriving a contrastive self-supervised loss based on the corresponding contrastive context vector and the corresponding target quantized vector token. The method also include generating a high-level context vector based on the contrastive context vector and, for each high-level context vector, learning to predict the target token index at the corresponding time step using a cross-entropy loss based on the target token index. The method also includes predicting speech recognition hypotheses for the utterance and training a multilingual automatic speech recognition (ASR) model using an unsupervised loss and a supervised loss.
-
23.
公开(公告)号:US20250078815A1
公开(公告)日:2025-03-06
申请号:US18826135
申请日:2024-09-05
Applicant: Google LLC
Inventor: Shaojin Ding , David Qiu , David Rim , Amir Yazdanbakhsh , Yanzhang He , Zhonglin Han , Rohit Prakash Prabhavalkar , Weiran Wang , Bo Li , Jian Li , Tara N. Sainath , Shivani Agrawal , Oleg Rybakov
IPC: G10L15/06
Abstract: A method includes obtaining a plurality of training samples that each include a respective speech utterance and a respective textual utterance representing a transcription of the respective speech utterance. The method also includes fine-tuning, using quantization and sparsity aware training with native integer operations, a pre-trained automatic speech recognition (ASR) model on the plurality of training samples. Here, the pre-trained ASR model includes a plurality of weights and the fine-tuning includes pruning one or more weights of the plurality of weights using a sparsity mask and quantizing each weight of the plurality of weights based on an integer with a fixed-bit width. The method also includes providing the fine-tuned ASR model to a user device.
-
公开(公告)号:US12236917B2
公开(公告)日:2025-02-25
申请号:US18067267
申请日:2022-12-16
Applicant: GOOGLE LLC
Inventor: Bo Li , Kaushik Sheth
IPC: G09G3/36
Abstract: A display system comprising a plurality of display controller circuits controlling a like number of independent segments of pixel drive circuits of a backplane. Each pixel drive circuit comprises a memory element and associated pixel drive circuitry. The segments of the backplane may be organized vertically. The word line for the memory cells of a first segment of pixel drive circuits passes underneath a second segment of pixel drive circuits without directly interacting with the pixel drive circuits of the second segment in order to reach the pixel drive circuits of the first segment. The plurality of display controller circuits operate asynchronously but are kept at the same frame rate by an external signal such as Vsync.
-
公开(公告)号:US12094453B2
公开(公告)日:2024-09-17
申请号:US17447285
申请日:2021-09-09
Applicant: Google LLC
Inventor: Jiahui Yu , Chung-cheng Chiu , Bo Li , Shuo-yiin Chang , Tara Sainath , Wei Han , Anmol Gulati , Yanzhang He , Arun Narayanan , Yonghui Wu , Ruoming Pang
IPC: G10L15/06 , G10L15/16 , G10L15/187 , G10L15/22 , G10L15/30
CPC classification number: G10L15/063 , G10L15/16 , G10L15/22 , G10L15/30 , G10L15/187
Abstract: A computer-implemented method of training a streaming speech recognition model that includes receiving, as input to the streaming speech recognition model, a sequence of acoustic frames. The streaming speech recognition model is configured to learn an alignment probability between the sequence of acoustic frames and an output sequence of vocabulary tokens. The vocabulary tokens include a plurality of label tokens and a blank token. At each output step, the method includes determining a first probability of emitting one of the label tokens and determining a second probability of emitting the blank token. The method also includes generating the alignment probability at a sequence level based on the first probability and the second probability. The method also includes applying a tuning parameter to the alignment probability at the sequence level to maximize the first probability of emitting one of the label tokens.
-
公开(公告)号:US20240304185A1
公开(公告)日:2024-09-12
申请号:US18598885
申请日:2024-03-07
Applicant: Google LLC
Inventor: Ke Hu , Bo Li , Tara N. Sainath , Yu Zhang , Francoise Beaufays
IPC: G10L15/197 , G10L15/02 , G10L15/06
CPC classification number: G10L15/197 , G10L15/02 , G10L15/063
Abstract: A method of a multilingual ASR model includes receiving a sequence of acoustic frames characterizing an utterance of speech. At a plurality of output steps, the method further includes generating a first higher order feature representation for an acoustic frame by a first encoder that includes a first plurality of multi-head attention layers; generating a second higher order feature representation for a corresponding first higher order feature representation by a second encoder that includes a second plurality of multi-head attention layers; and generating, by a first decoder, a first probability distribution over possible speech recognition hypotheses based on the second higher order feature representation and a sequence of N previous non-blank symbols. A gating layer of each respective MoE layer configured to dynamically route an output from a previous multi-head attention layer at each of the plurality of output steps to a respective pair of feed-forward expert networks.
-
27.
公开(公告)号:US20230306958A1
公开(公告)日:2023-09-28
申请号:US18188632
申请日:2023-03-23
Applicant: Google LLC
Inventor: Chao Zhang , Bo Li , Tara N. Sainath , Trevor Strohman , Sepand Mavandadi , Shuo-yiin Chang , Parisa Haghani
CPC classification number: G10L15/005 , G10L15/16 , G10L15/063
Abstract: A method includes receiving a sequence of acoustic frames as input to an automatic speech recognition (ASR) model. The method also includes generating, by a first encoder, a first higher order feature representation for a corresponding acoustic frame. The method also includes generating, by a second encoder, a second higher order feature representation for a corresponding first higher order feature representation. The method also includes generating, by a language identification (ID) predictor, a language prediction representation based on a concatenation of the first higher order feature representation and the second higher order feature representation. The method also includes generating, by a first decoder, a first probability distribution over possible speech recognition hypotheses based on a concatenation of the second higher order feature representation and the language prediction representation.
-
公开(公告)号:US20230237993A1
公开(公告)日:2023-07-27
申请号:US18011571
申请日:2021-10-01
Applicant: Google LLC
Inventor: Jiahui Yu , Ruoming Pang , Wei Han , Anmol Gulati , Chung-Cheng Chiu , Bo Li , Tara N. Sainath , Yonghui Hu
Abstract: Systems and methods of the present disclosure are directed to a computing system, including one or more processors and a machine-learned multi-mode speech recognition model configured to operate in a streaming recognition mode or a contextual recognition mode. The computing system can perform operations including obtaining speech data and a ground truth label and processing the speech data using the contextual recognition mode to obtain contextual prediction data. The operations can include evaluating a difference between the contextual prediction data and the ground truth label and processing the speech data using the streaming recognition mode to obtain streaming prediction data. The operations can include evaluating a difference between the streaming prediction data and the ground truth label and the contextual and streaming prediction data. The operations can include adjusting parameters of the speech recognition model.
-
公开(公告)号:US20230147106A1
公开(公告)日:2023-05-11
申请号:US18150724
申请日:2023-01-05
Applicant: GOOGLE LLC
Inventor: Bo Li , Kaushik Sheth , Edwin Lyle Hudson
IPC: G09G3/36
CPC classification number: G09G3/3688 , G09G2360/12
Abstract: A backplane design for delivering image data in an efficient manner to a memory cell forming a part of a pixel driver comprises a word line design and a column data register release signal delivery design that are speed matched and a complementary bit line delivery design that is speed matched to a row decoder signal circuit operative to pull a word line driver to a state to enable the memory circuits of that row to receive data from the column drivers for each column. The speed matching is effective over a range of operating temperatures because the circuit designs are substantially identical.
-
公开(公告)号:US09984683B2
公开(公告)日:2018-05-29
申请号:US15217457
申请日:2016-07-22
Applicant: Google LLC
Inventor: Bo Li , Tara N. Sainath
CPC classification number: G10L15/16 , G06N3/08 , G10L15/02 , G10L15/26 , G10L2015/025
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for automatic speech recognition using multi-dimensional models. In some implementations, audio data that describes an utterance is received. A transcription for the utterance is determined using an acoustic model that includes a neural network having first memory blocks for time information and second memory blocks for frequency information. The transcription for the utterance is provided as output of an automated speech recognizer.
-
-
-
-
-
-
-
-
-