Deliberation by Text-Only and Semi-Supervised Training

    公开(公告)号:US20230298563A1

    公开(公告)日:2023-09-21

    申请号:US18186157

    申请日:2023-03-18

    申请人: Google LLC

    IPC分类号: G10L13/08 G10L15/16 G10L15/06

    摘要: A method of text-only and semi-supervised training for deliberation includes receiving training data including unspoken textual utterances that are each not paired with any corresponding spoken utterance of non-synthetic speech, and training a deliberation model that includes a text encoder and a deliberation decoder on the unspoken textual utterances. The method also includes receiving, at the trained deliberation model, first-pass hypotheses and non-causal acoustic embeddings. The first-pass hypotheses is generated by a recurrent neural network-transducer (RNN-T) decoder for the non-causal acoustic embeddings encoded by a non-causal encoder. The method also includes encoding, using the text encoder, the first-pass hypotheses generated by the RNN-T decoder, and generating, using the deliberation decoder attending to both the first-pass hypotheses and the non-causal acoustic embeddings, second-pass hypotheses.

    Streaming End-to-end Multilingual Speech Recognition with Joint Language Identification

    公开(公告)号:US20230306958A1

    公开(公告)日:2023-09-28

    申请号:US18188632

    申请日:2023-03-23

    申请人: Google LLC

    IPC分类号: G10L15/00 G10L15/16 G10L15/06

    摘要: A method includes receiving a sequence of acoustic frames as input to an automatic speech recognition (ASR) model. The method also includes generating, by a first encoder, a first higher order feature representation for a corresponding acoustic frame. The method also includes generating, by a second encoder, a second higher order feature representation for a corresponding first higher order feature representation. The method also includes generating, by a language identification (ID) predictor, a language prediction representation based on a concatenation of the first higher order feature representation and the second higher order feature representation. The method also includes generating, by a first decoder, a first probability distribution over possible speech recognition hypotheses based on a concatenation of the second higher order feature representation and the language prediction representation.