Abstract:
A system that validates a native code module. During operation, the system receives a native code module comprised of untrusted native program code. The system validates the native code module by: (1) determining that code in the native code module does not include any restricted instructions and/or does not access restricted features of a computing device; and (2) determining that the instructions in the native code module are aligned along byte boundaries such that a specified set of byte boundaries always contain a valid instruction and control flow instructions have valid targets. The system allows successfully-validated native code modules to execute, and rejects native code modules that fail validation. By validating the native code module, the system facilitates safely executing the native code module in the secure runtime environment on the computing device, thereby achieving native code performance for untrusted program binaries without significant risk of unwanted side effects.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for memory address pinning. One of the methods includes loading a software module into a sandbox environment; receiving, a message from the software module to a recipient, the message includes a memory address; determining whether to pin the memory address; and passing the message to an address pinning unit which replaces at least a portion of the memory address with at least a portion of a specified replacement address, when it is determined to pin the memory address, and passes the modified message to be delivered to the recipient.
Abstract:
Some embodiments provide a system that executes a native code module. During operation, the system obtains the native code module. Next, the system loads the native code module into a secure runtime environment. Finally, the system safely executes the native code module in the secure runtime environment by using a set of software fault isolation (SFI) mechanisms that use predicated store instructions and predicated control flow instructions, wherein each predicated instruction from the predicated store instructions and the predicated control flow instructions is executed if a mask condition associated with the predicated instruction is met.
Abstract:
Some embodiments provide a system that executes a native code module. During operation, the system obtains the native code module. Next, the system loads the native code module into a secure runtime environment. Finally, the system safely executes the native code module in the secure runtime environment by using a set of software fault isolation (SFI) mechanisms that constrain store instructions in the native code module. The SFI mechanisms also maintain control flow integrity for the native code module by dividing a code region associated with the native code module into equally sized code blocks and data blocks and starting each of the data blocks with an illegal instruction.
Abstract:
A system that validates a native code module. During operation, the system receives a native code module comprised of untrusted native program code. The system validates the native code module by: (1) determining that code in the native code module does not include any restricted instructions and/or does not access restricted features of a computing device; and (2) determining that the instructions in the native code module are aligned along byte boundaries such that a specified set of byte boundaries always contain a valid instruction and control flow instructions have valid targets. The system allows successfully-validated native code modules to execute, and rejects native code modules that fail validation. By validating the native code module, the system facilitates safely executing the native code module in the secure runtime environment on the computing device, thereby achieving native code performance for untrusted program binaries without significant risk of unwanted side effects.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for memory address pinning. One of the methods includes loading a software module into a sandbox environment; receiving, a message from the software module to a recipient, the message includes a memory address; determining whether to pin the memory address; and passing the message to an address pinning unit which replaces at least a portion of the memory address with at least a portion of a specified replacement address, when it is determined to pin the memory address, and passes the modified message to be delivered to the recipient.
Abstract:
Methods and apparatus for dynamically adding and deleting new code to previously validated application executing in a secured runtime. New code is written to a portion of secured memory not executable by application. New code is validated to ensure it cannot directly call operating system, address memory outside of secured memory, or modify secured memory state. Indirect branch instructions may only target addresses aligned on fixed size boundaries within the secured memory. Validated code is copied to portion of secured memory executable by application in two stage process that ensures partially copied segments cannot be executed. Validated new code can be deleted once all threads reach safe execution point, provided code was previously inserted as unit or contains no internal targets that can be called by code not also being deleted.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for selecting native code instructions. One of the methods includes receiving an initial machine language instruction for execution by a processor in a first execution mode; determining that a portion of the initial machine language instruction, when executed by the processor in a second execution mode, satisfies one or more risk criteria; generating one or more alternative machine language instructions to replace the initial machine language instruction for execution by the processor in the first execution mode, wherein the one or more alternative machine language instructions, when executed by the processor in the second execution mode, mitigate the one or more risk criteria; and providing the one or more alternative machine language instructions.