Abstract:
A system that validates a native code module. During operation, the system receives a native code module comprised of untrusted native program code. The system validates the native code module by: (1) determining that code in the native code module does not include any restricted instructions and/or does not access restricted features of a computing device; and (2) determining that the instructions in the native code module are aligned along byte boundaries such that a specified set of byte boundaries always contain a valid instruction and control flow instructions have valid targets. The system allows successfully-validated native code modules to execute, and rejects native code modules that fail validation. By validating the native code module, the system facilitates safely executing the native code module in the secure runtime environment on the computing device, thereby achieving native code performance for untrusted program binaries without significant risk of unwanted side effects.
Abstract:
A system that safely executes a native code module on a computing device. During operation, the system receives the native code module, which is comprised of untrusted native program code expressed using native instructions in the instruction set architecture associated with the computing device. The system then loads the native code module into a secure runtime environment, and proceeds to execute a set of instructions from the native code module in the secure runtime environment. The secure runtime environment enforces code integrity, control flow integrity, and data integrity for the native code module. Furthermore, the secure runtime environment moderates which resources can be accessed by the native code module on the computing device and/or how these resources can be accessed. By executing the native code module in the secure runtime environment, the system facilitates achieving native code performance for untrusted program code without a significant risk of unwanted side effects.
Abstract:
A system that safely executes a native code module on a computing device. During operation, the system receives the native code module, which is comprised of untrusted native program code expressed using native instructions in the instruction set architecture associated with the computing device. The system then loads the native code module into a secure runtime environment, and proceeds to execute a set of instructions from the native code module in the secure runtime environment. The secure runtime environment enforces code integrity, control flow integrity, and data integrity for the native code module. Furthermore, the secure runtime environment moderates which resources can be accessed by the native code module on the computing device and/or how these resources can be accessed. By executing the native code module in the secure runtime environment, the system facilitates achieving native code performance for untrusted program code without a significant risk of unwanted side effects.
Abstract:
A system that validates a native code module. During operation, the system receives a native code module comprised of untrusted native program code. The system validates the native code module by: (1) determining that code in the native code module does not include any restricted instructions and/or does not access restricted features of a computing device; and (2) determining that the instructions in the native code module are aligned along byte boundaries such that a specified set of byte boundaries always contain a valid instruction and control flow instructions have valid targets. The system allows successfully-validated native code modules to execute, and rejects native code modules that fail validation. By validating the native code module, the system facilitates safely executing the native code module in the secure runtime environment on the computing device, thereby achieving native code performance for untrusted program binaries without significant risk of unwanted side effects.
Abstract:
A system that validates a native code module. During operation, the system receives a native code module comprised of untrusted native program code. The system validates the native code module by: (1) determining that code in the native code module does not include any restricted instructions and/or does not access restricted features of a computing device; and (2) determining that the instructions in the native code module are aligned along byte boundaries such that a specified set of byte boundaries always contain a valid instruction and control flow instructions have valid targets. The system allows successfully-validated native code modules to execute, and rejects native code modules that fail validation. By validating the native code module, the system facilitates safely executing the native code module in the secure runtime environment on the computing device, thereby achieving native code performance for untrusted program binaries without significant risk of unwanted side effects.
Abstract:
A system that validates a native code module. During operation, the system receives a native code module comprised of untrusted native program code. The system validates the native code module by: (1) determining that code in the native code module does not include any restricted instructions and/or does not access restricted features of a computing device; and (2) determining that the instructions in the native code module are aligned along byte boundaries such that a specified set of byte boundaries always contain a valid instruction and control flow instructions have valid targets. The system allows successfully-validated native code modules to execute, and rejects native code modules that fail validation. By validating the native code module, the system facilitates safely executing the native code module in the secure runtime environment on the computing device, thereby achieving native code performance for untrusted program binaries without significant risk of unwanted side effects.
Abstract:
A system that safely executes a native code module on a computing device. During operation, the system receives the native code module, which is comprised of untrusted native program code expressed using native instructions in the instruction set architecture associated with the computing device. The system then loads the native code module into a secure runtime environment, and proceeds to execute a set of instructions from the native code module in the secure runtime environment. The secure runtime environment enforces code integrity, control flow integrity, and data integrity for the native code module. Furthermore, the secure runtime environment moderates which resources can be accessed by the native code module on the computing device and/or how these resources can be accessed. By executing the native code module in the secure runtime environment, the system facilitates achieving native code performance for untrusted program code without a significant risk of unwanted side effects.
Abstract:
A system that validates a native code module. During operation, the system receives a native code module comprised of untrusted native program code. The system validates the native code module by: (1) determining that code in the native code module does not include any restricted instructions and/or does not access restricted features of a computing device; and (2) determining that the instructions in the native code module are aligned along byte boundaries such that a specified set of byte boundaries always contain a valid instruction and control flow instructions have valid targets. The system allows successfully-validated native code modules to execute, and rejects native code modules that fail validation. By validating the native code module, the system facilitates safely executing the native code module in the secure runtime environment on the computing device, thereby achieving native code performance for untrusted program binaries without significant risk of unwanted side effects.