TWO-PASS END TO END SPEECH RECOGNITION

    公开(公告)号:US20240420687A1

    公开(公告)日:2024-12-19

    申请号:US18815537

    申请日:2024-08-26

    Applicant: GOOGLE LLC

    Abstract: Two-pass automatic speech recognition (ASR) models can be used to perform streaming on-device ASR to generate a text representation of an utterance captured in audio data. Various implementations include a first-pass portion of the ASR model used to generate streaming candidate recognition(s) of an utterance captured in audio data. For example, the first-pass portion can include a recurrent neural network transformer (RNN-T) decoder. Various implementations include a second-pass portion of the ASR model used to revise the streaming candidate recognition(s) of the utterance and generate a text representation of the utterance. For example, the second-pass portion can include a listen attend spell (LAS) decoder. Various implementations include a shared encoder shared between the RNN-T decoder and the LAS decoder.

    Cascaded encoders for simplified streaming and non-streaming ASR

    公开(公告)号:US12154581B2

    公开(公告)日:2024-11-26

    申请号:US17237021

    申请日:2021-04-21

    Applicant: Google LLC

    Abstract: An automated speech recognition (ASR) model includes a first encoder, a second encoder, and a decoder. The first encoder receives, as input, a sequence of acoustic frames, and generates, at each of a plurality of output steps, a first higher order feature representation for a corresponding acoustic frame in the sequence of acoustic frames. The second encoder receives, as input, the first higher order feature representation generated by the first encoder at each of the plurality of output steps, and generates, at each of the plurality of output steps, a second higher order feature representation for a corresponding first higher order feature frame. The decoder receives, as input, the second higher order feature representation generated by the second encoder at each of the plurality of output steps, and generates, at each of the plurality of time steps, a first probability distribution over possible speech recognition hypotheses.

    Context aware beamforming of audio data

    公开(公告)号:US11798533B2

    公开(公告)日:2023-10-24

    申请号:US17221220

    申请日:2021-04-02

    Applicant: Google LLC

    Abstract: Implementations disclosed herein are directed to initializing and utilizing a beamformer in processing of audio data received at a computing device. The computing device can: receive audio data that captures a spoken utterance of a user, determine that a first audio data segment of the audio data includes one or more particular words or phrases; obtain a preceding audio data segment that precedes the first audio data segment; estimate a spatial correlation matrix based on the first audio data segment and based on the preceding audio data segment; initialize the beamformer based on the estimated spatial correlation matrix; and cause the initialized beamformer to be utilized in processing of at least a second audio data segment of the audio data. Additionally, or alternatively, the computing device can transmit the spatial correlation matrix to server(s), and the server(s) can transmit the initialized beamformer back to the computing device.

    ENHANCED MULTI-CHANNEL ACOUSTIC MODELS

    公开(公告)号:US20210295859A1

    公开(公告)日:2021-09-23

    申请号:US17303822

    申请日:2021-06-08

    Applicant: Google LLC

    Abstract: This specification describes computer-implemented methods and systems. One method includes receiving, by a neural network of a speech recognition system, first data representing a first raw audio signal and second data representing a second raw audio signal. The first raw audio signal and the second raw audio signal describe audio occurring at a same period of time. The method further includes generating, by a spatial filtering layer of the neural network, a spatial filtered output using the first data and the second data, and generating, by a spectral filtering layer of the neural network, a spectral filtered output using the spatial filtered output. Generating the spectral filtered output comprises processing frequency-domain data representing the spatial filtered output. The method still further includes processing, by one or more additional layers of the neural network, the spectral filtered output to predict sub-word units encoded in both the first raw audio signal and the second raw audio signal.

    Adaptive multichannel dereverberation for automatic speech recognition

    公开(公告)号:US10762914B2

    公开(公告)日:2020-09-01

    申请号:US16032996

    申请日:2018-07-11

    Applicant: Google LLC

    Abstract: Utilizing an adaptive multichannel technique to mitigate reverberation present in received audio signals, prior to providing corresponding audio data to one or more additional component(s), such as automatic speech recognition (ASR) components. Implementations disclosed herein are “adaptive”, in that they utilize a filter, in the reverberation mitigation, that is online, causal and varies depending on characteristics of the input. Implementations disclosed herein are “multichannel”, in that a corresponding audio signal is received from each of multiple audio transducers (also referred to herein as “microphones”) of a client device, and the multiple audio signals (e.g., frequency domain representations thereof) are utilized in updating of the filter—and dereverberation occurs for audio data corresponding to each of the audio signals (e.g., frequency domain representations thereof) prior to the audio data being provided to ASR component(s) and/or other component(s).

Patent Agency Ranking