-
公开(公告)号:US11741966B2
公开(公告)日:2023-08-29
申请号:US17964141
申请日:2022-10-12
Applicant: GOOGLE LLC
Inventor: Asaf Aharoni , Arun Narayanan , Nir Shabat , Parisa Haghani , Galen Tsai Chuang , Yaniv Leviathan , Neeraj Gaur , Pedro J. Moreno Mengibar , Rohit Prakash Prabhavalkar , Zhongdi Qu , Austin Severn Waters , Tomer Amiaz , Michiel A. U. Bacchiani
CPC classification number: G10L15/26 , G10L15/32 , H04M1/02 , H04M1/663 , H04M3/4286 , H04M3/5191
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for an automated calling system are disclosed. In one aspect, a method includes the actions of receiving audio data of an utterance spoken by a user who is having a telephone conversation with a bot. The actions further include determining a context of the telephone conversation. The actions further include determining a user intent of a first previous portion of the telephone conversation spoken by the user and a bot intent of a second previous portion of the telephone conversation outputted by a speech synthesizer of the bot. The actions further include, based on the audio data of the utterance, the context of the telephone conversation, the user intent, and the bot intent, generating synthesized speech of a reply by the bot to the utterance. The actions further include, providing, for output, the synthesized speech.
-
公开(公告)号:US20220310081A1
公开(公告)日:2022-09-29
申请号:US17701635
申请日:2022-03-22
Applicant: Google LLC
Inventor: Neeraj Gaur , Tongzhou Chen , Ehsan Variani , Bhuvana Ramabhadran , Parisa Haghani , Pedro J. Moreno Mengibar
IPC: G10L15/197 , G10L15/16 , G10L15/22 , G10L15/00
Abstract: A method includes receiving a sequence of acoustic frames extracted from audio data corresponding to an utterance. During a first pass, the method includes processing the sequence of acoustic frames to generate N candidate hypotheses for the utterance. During a second pass, and for each candidate hypothesis, the method includes generating a respective un-normalized likelihood score; generating a respective external language model score; generating a standalone score that models prior statistics of the corresponding candidate hypothesis, and generating a respective overall score for the candidate hypothesis based on the un-normalized likelihood score, the external language model score, and the standalone score. The method also includes selecting the candidate hypothesis having the highest respective overall score from among the N candidate hypotheses as a final transcription of the utterance.
-
公开(公告)号:US20240420692A1
公开(公告)日:2024-12-19
申请号:US18818010
申请日:2024-08-28
Applicant: Google LLC
Inventor: Neeraj Gaur , Tongzhou Chen , Ehsan Variani , Bhuvana Ramabhadran , Parisa Haghani , Pedro J. Moreno Mengibar
IPC: G10L15/197 , G10L15/00 , G10L15/16 , G10L15/22
Abstract: A method includes receiving a sequence of acoustic frames extracted from audio data corresponding to an utterance. During a first pass, the method includes processing the sequence of acoustic frames to generate N candidate hypotheses for the utterance. During a second pass, and for each candidate hypothesis, the method includes: generating a respective un-normalized likelihood score; generating a respective external language model score; generating a standalone score that models prior statistics of the corresponding candidate hypothesis; and generating a respective overall score for the candidate hypothesis based on the un-normalized likelihood score, the external language model score, and the standalone score. The method also includes selecting the candidate hypothesis having the highest respective overall score from among the N candidate hypotheses as a final transcription of the utterance.
-
公开(公告)号:US12254875B2
公开(公告)日:2025-03-18
申请号:US18589220
申请日:2024-02-27
Applicant: Google LLC
Inventor: Neeraj Gaur , Tongzhou Chen , Ehsan Variani , Bhuvana Ramabhadran , Parisa Haghani , Pedro J. Moreno Mengibar
IPC: G10L15/197 , G10L15/00 , G10L15/16 , G10L15/22
Abstract: A method includes receiving a sequence of acoustic frames extracted from audio data corresponding to an utterance. During a first pass, the method includes processing the sequence of acoustic frames to generate N candidate hypotheses for the utterance. During a second pass, and for each candidate hypothesis, the method includes: generating a respective un-normalized likelihood score; generating a respective external language model score; generating a standalone score that models prior statistics of the corresponding candidate hypothesis; and generating a respective overall score for the candidate hypothesis based on the un-normalized likelihood score, the external language model score, and the standalone score. The method also includes selecting the candidate hypothesis having the highest respective overall score from among the N candidate hypotheses as a final transcription of the utterance.
-
公开(公告)号:US20230298570A1
公开(公告)日:2023-09-21
申请号:US18187222
申请日:2023-03-21
Applicant: Google LLC
Inventor: Weiran Wang , Tongzhou Chen , Tara N. Sainath , Ehsan Variani , Rohit Prakash Prabhavalkar , Ronny Huang , Bhuvana Ramabhadran , Neeraj Gaur , Sepand Mavandadi , Charles Caleb Peyser , Trevor Strohman , Yangzhang He , David Rybach
CPC classification number: G10L15/063 , G10L15/19 , G10L15/22 , G10L15/16 , G10L15/02
Abstract: A method includes generating, using an audio encoder, a higher-order feature representation for each acoustic frame in a sequence of acoustic frames; generating, using a decoder, based on the higher-order feature representation, a plurality of speech recognition hypotheses, each hypotheses corresponding to a candidate transcription of an utterance and having an associated first likelihood score; generating, using an external language model, for each speech recognition hypothesis, a second likelihood score; determining, using a learnable fusion module, for each speech recognition hypothesis, a set of fusion weights based on the higher-order feature representation and the speech recognition hypothesis; and generating, using the learnable fusion module, for each speech recognition hypothesis, a third likelihood score based on the first likelihood score, the second likelihood score, and the set of fusion weights, the audio encoder and decoder trained using minimum additive error rate training in the presence of the external language model.
-
公开(公告)号:US20230038343A1
公开(公告)日:2023-02-09
申请号:US17964141
申请日:2022-10-12
Applicant: GOOGLE LLC
Inventor: Asaf Aharoni , Arun Narayanan , Nir Shabat , Parisa Haghani , Galen Tsai Chuang , Yaniv Leviathan , Neeraj Gaur , Pedro J. Moreno Mengibar , Rohit Prakash Prabhavalkar , Zhongdi Qu , Austin Severn Waters , Tomer Amiaz , Michiel A.U. Bacchiani
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for an automated calling system are disclosed. In one aspect, a method includes the actions of receiving audio data of an utterance spoken by a user who is having a telephone conversation with a bot. The actions further include determining a context of the telephone conversation. The actions further include determining a user intent of a first previous portion of the telephone conversation spoken by the user and a bot intent of a second previous portion of the telephone conversation outputted by a speech synthesizer of the bot. The actions further include, based on the audio data of the utterance, the context of the telephone conversation, the user intent, and the bot intent, generating synthesized speech of a reply by the bot to the utterance. The actions further include, providing, for output, the synthesized speech.
-
公开(公告)号:US11495233B2
公开(公告)日:2022-11-08
申请号:US17505913
申请日:2021-10-20
Applicant: GOOGLE LLC
Inventor: Asaf Aharoni , Arun Narayanan , Nir Shabat , Parisa Haghani , Galen Tsai Chuang , Yaniv Leviathan , Neeraj Gaur , Pedro J. Moreno Mengibar , Rohit Prakash Prabhavalkar , Zhongdi Qu , Austin Severn Waters , Tomer Amiaz , Michiel A.U. Bacchiani
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for an automated calling system are disclosed. In one aspect, a method includes the actions of receiving audio data of an utterance spoken by a user who is having a telephone conversation with a bot. The actions further include determining a context of the telephone conversation. The actions further include determining a user intent of a first previous portion of the telephone conversation spoken by the user and a bot intent of a second previous portion of the telephone conversation outputted by a speech synthesizer of the bot. The actions further include, based on the audio data of the utterance, the context of the telephone conversation, the user intent, and the bot intent, generating synthesized speech of a reply by the bot to the utterance. The actions further include, providing, for output, the synthesized speech.
-
公开(公告)号:US12254883B2
公开(公告)日:2025-03-18
申请号:US18635974
申请日:2024-04-15
Applicant: GOOGLE LLC
Inventor: Asaf Aharoni , Arun Narayanan , Nir Shabat , Parisa Haghani , Galen Tsai Chuang , Yaniv Leviathan , Neeraj Gaur , Pedro J. Moreno Mengibar , Rohit Prakash Prabhavalkar , Zhongdi Qu , Austin Severn Waters , Tomer Amiaz , Michiel A. U. Bacchiani
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for an automated calling system are disclosed. In one aspect, a method includes the actions of receiving audio data of an utterance spoken by a user who is having a telephone conversation with a bot. The actions further include determining a context of the telephone conversation. The actions further include determining a user intent of a first previous portion of the telephone conversation spoken by the user and a bot intent of a second previous portion of the telephone conversation outputted by a speech synthesizer of the bot. The actions further include, based on the audio data of the utterance, the context of the telephone conversation, the user intent, and the bot intent, generating synthesized speech of a reply by the bot to the utterance. The actions further include, providing, for output, the synthesized speech.
-
公开(公告)号:US20240265923A1
公开(公告)日:2024-08-08
申请号:US18635974
申请日:2024-04-15
Applicant: GOOGLE LLC
Inventor: Asaf Aharoni , Arun Narayanan , Nir Shabat , Parisa Haghani , Galen Tsai Chuang , Yaniv Leviathan , Neeraj Gaur , Pedro J. Moreno Mengibar , Rohit Prakash Prabhavalkar , Zhongdi Qu , Austin Severn Waters , Tomer Amiaz , Michiel A.U. Bacchiani
CPC classification number: G10L15/26 , G10L15/32 , H04M1/02 , H04M1/663 , H04M3/4286 , H04M3/5191
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for an automated calling system are disclosed. In one aspect, a method includes the actions of receiving audio data of an utterance spoken by a user who is having a telephone conversation with a bot. The actions further include determining a context of the telephone conversation. The actions further include determining a user intent of a first previous portion of the telephone conversation spoken by the user and a bot intent of a second previous portion of the telephone conversation outputted by a speech synthesizer of the bot. The actions further include, based on the audio data of the utterance, the context of the telephone conversation, the user intent, and the bot intent, generating synthesized speech of a reply by the bot to the utterance. The actions further include, providing, for output, the synthesized speech.
-
公开(公告)号:US11990133B2
公开(公告)日:2024-05-21
申请号:US18219480
申请日:2023-07-07
Applicant: GOOGLE LLC
Inventor: Asaf Aharoni , Arun Narayanan , Nir Shabat , Parisa Haghani , Galen Tsai Chuang , Yaniv Leviathan , Neeraj Gaur , Pedro J. Moreno Mengibar , Rohit Prakash Prabhavalkar , Zhongdi Qu , Austin Severn Waters , Tomer Amiaz , Michiel A. U. Bacchiani
CPC classification number: G10L15/26 , G10L15/32 , H04M1/02 , H04M1/663 , H04M3/4286 , H04M3/5191
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for an automated calling system are disclosed. In one aspect, a method includes the actions of receiving audio data of an utterance spoken by a user who is having a telephone conversation with a bot. The actions further include determining a context of the telephone conversation. The actions further include determining a user intent of a first previous portion of the telephone conversation spoken by the user and a bot intent of a second previous portion of the telephone conversation outputted by a speech synthesizer of the bot. The actions further include, based on the audio data of the utterance, the context of the telephone conversation, the user intent, and the bot intent, generating synthesized speech of a reply by the bot to the utterance. The actions further include, providing, for output, the synthesized speech.
-
-
-
-
-
-
-
-
-