Abstract:
Turbine blade airfoils, film cooling systems thereof, and methods for forming improved film cooled components are provided. The turbine blade airfoil has an external wall surface and comprises leading and trailing edges, pressure and suction sidewalls both extending between the leading and the trailing edges, an internal cavity, one or more isolation trenches in the external wall surface, a plurality of film cooling holes arranged in cooling rows, and a plurality of span-wise surface connectors interconnecting the outlets of the film cooling holes in the same cooling row to form a plurality of rows of interconnected film cooling holes. Each film cooling hole has an inlet connected to the internal cavity and an outlet opening onto the external wall surface. The span-wise surface connectors in at least one selected row of interconnected film cooling holes are disposed in the one or more isolation trenches.
Abstract:
Methods are provided for manufacturing a shrouded bonded turbine rotor. A shrouded blade ring is formed. The shrouded blade ring is formed by bonding a unitary shroud ring to an assembled blade ring or assembling a plurality of shrouded turbine blade segments. The shrouded blade ring is bonded to a hub. The shrouded bonded turbine rotors are also provided. The shrouded bonded turbine rotor comprises a shrouded blade ring and a shroud. The shrouded blade ring comprises a plurality of turbine blade segments and a shroud. Each turbine blade segment comprises an airfoil portion including an airfoil having a root and a tip. The shroud covers the tip of each airfoil in the shrouded blade ring. A hub is bonded with the shrouded blade ring.
Abstract:
A turbine rotor blade is provided with for a turbine section of an engine that includes a shroud surrounding the rotor blade. The rotor blade includes a platform and an airfoil extending from the platform into a mainstream gas path. The airfoil includes a pressure side wall, a suction side wall joined to the pressure side wall at a leading edge and a trailing edge, a tip cap extending between the suction side wall and the pressure side wall, a first squealer tip extension extending from the pressure side wall at a first angle relative to the pressure side wall, the first squealer tip extension defining a first cooling hole that converges between an inlet and an outlet; an internal cooling circuit configured to deliver cooling air to a gap between the pressure side squealer tip extension and the shroud via the first cooling hole.
Abstract:
A turbine blade includes an airfoil that has a tip region that extends from the leading edge toward the trailing edge, and the tip region is bounded by a wall that extends at an angle. The leading edge has a leading edge cooling circuit that is defined from the platform to a tip flag channel, and the leading edge cooling circuit is in fluid communication with the tip flag channel. The pressure side includes at least one tip dust hole defined through the wall proximate the pressure side, and the at least one tip dust hole has an inlet and an outlet. The airfoil has at least one rib defined on the wall that extends at a second angle to direct the particles and a portion of the cooling fluid into the inlet.
Abstract:
A turbine nozzle for a gas turbine engine includes a plurality of nozzle segments that are configured to be assembled into a full ring such that each one of the plurality of nozzle segments is adjacent to another one of the plurality of nozzle segments. Each one of the plurality of nozzle segments includes an endwall segment and a nozzle vane. The turbine nozzle includes a feather seal interface defined by endwall segments of adjacent ones of the plurality of nozzle segments. The feather seal interface is defined along an area of reduced pressure drop through a pressure field defined between adjacent nozzle vanes of the plurality of nozzle segments to reduce leakage through the plurality of nozzle segments. The turbine nozzle includes a feather seal received within the feather seal interface that cooperates with the feather seal interface to reduce leakage through the plurality of nozzle segments.
Abstract:
A turbine vane includes an airfoil that extends from an inner diameter to an outer diameter, and from a leading edge to a trailing edge. The turbine vane includes an inner platform coupled to the airfoil at the inner diameter. The turbine vane includes a cooling system defined in the airfoil including a first conduit in proximity to the leading edge to cool the leading edge and a second conduit to cool the trailing edge. The first conduit has an inlet at the outer diameter to receive a cooling fluid and an outlet portion that is defined at least partially through the inner platform. The first conduit includes a plurality of cooling features that extend from a first surface of the first conduit, and the first surface of the first conduit is opposite the leading edge.
Abstract:
Turbine wheels, turbine engines, and methods of forming the turbine wheels are provided herein. In an embodiment, a turbine wheel includes a rotor disk and a plurality of turbine blades. Each turbine blade is operatively connected to the rotor disk through a blade mount, which is bonded to the rotor disk. The blade mount and the rotor disk have a fore surface on a higher pressure side thereof and an aft surface on a lower pressure side thereof. The blade mount includes a blade attachment surface that extends between and connects the fore surface and the aft surface. The turbine blade extends from the blade attachment surface. A gap is defined between adjacent blade mounts. The gap separates the blade mounts and extends into the rotor disk. The gap includes a pocket that has a fore opening in the fore surface. A pocket seal is disposed in the pocket.
Abstract:
A turbine nozzle for a gas turbine engine includes a plurality of nozzle segments that are configured to be assembled into a full ring such that each one of the plurality of nozzle segments is adjacent to another one of the plurality of nozzle segments. Each one of the plurality of nozzle segments includes an endwall segment and a nozzle vane. The turbine nozzle includes a feather seal interface defined by endwall segments of adjacent ones of the plurality of nozzle segments. The feather seal interface is defined along an area of reduced pressure drop through a pressure field defined between adjacent nozzle vanes of the plurality of nozzle segments to reduce leakage through the plurality of nozzle segments. The turbine nozzle includes a feather seal received within the feather seal interface that cooperates with the feather seal interface to reduce leakage through the plurality of nozzle segments.
Abstract:
A turbine blade with an integral flow meter is provided. The turbine blade includes a trailing edge and a leading edge opposite the trailing edge. The turbine blade includes a plurality of cooling passages each having a respective inlet in fluid communication with a source of cooling fluid to receive a cooling fluid. The turbine blade includes a plurality of flow meters, with at least a respective one of the plurality of flow meters associated with a respective one of the plurality of cooling passages at the respective inlet.
Abstract:
A turbine component with shaped cooling pins is provided. The turbine component includes at least one cooling circuit defined within the turbine component, the at least one cooling circuit in fluid communication with a source of a cooling fluid. The turbine component includes at least one shaped cooling pin disposed in the at least one cooling circuit. The at least one shaped cooling pin has a first end and a second end extending along an axis. The first end has a first curved surface defined by a minor diameter and the second end has a second curved surface defined by a major diameter. The first curved surface is upstream in the cooling fluid and the minor diameter is less than the major diameter.