Abstract:
An operation mode switching method and user equipment that relate to the field of communications technologies are disclosed, so that an operation mode of the user equipment can be automatically switched. A specific solution is: determining, by user equipment, that a current data transmission rate of the user equipment is less than a first rate threshold, and/or a battery temperature of the user equipment is greater than a first temperature threshold; determining, by the user equipment, that the user equipment is in a CA operation mode; changing, by the user equipment, a transmission mode parameter of the user equipment to a transmission mode parameter corresponding to a non-CA operation mode; and restarting, by the user equipment, a communications module of the user equipment, and sending a first access request to a base station, where the first access request carries the transmission mode parameter corresponding to the non-CA operation mode. Embodiments of the present invention are applied to a process in which the user equipment switches an operation mode of the user equipment.
Abstract:
A data flow migration method and device are disclosed. When migration between a source virtual machine and a target virtual machine is started, determining a silent time used for processing data flow migration; and receiving, within the silent time, a data flow packet sent by a switching node; and sending the data flow packet to the target virtual machine according to the data flow packet and a data flow migration policy. In this way, the silent time is used, a newly arrived data flow is redirected, and the newly arrived data flow is directly sent to the target virtual machine according to the data flow migration policy, which avoids migration of the newly arrived data flow. Therefore, data flows that arrive at the source virtual machine are on the decrease, and system migration performance is effectively improved.
Abstract:
Embodiments of the present invention include a method and a router for packet processing during a server failure. In the present invention, a router queries a locally-stored state of a primary value-added service server, thereby immediately learning the state of the primary value-added service server, and when the queried state of the primary value-added service server is a failed state, the router may immediately forward a received request packet to a request routing server for rerouting or forward it to a backup value-added service server, thereby shortening the waiting time of a client when the client requests a video value-added service. In addition, because addresses of backup value-added service servers are stored in the router, disadvantages that client complexity increases and network security is reduced in the prior art are overcome.