Abstract:
A method for underwater operating a camera built in a touch input device including a touch screen, a processor, and a controller may be provided that includes: performing a first drive mode in which a touch position is detected underwater by a capacitance change amount due to a touch pressure; and controlling operation of the camera underwater according to a touch on the touch screen by an object.
Abstract:
A method for temporarily manipulating an operation of an object in accordance with a touch pressure or a touch area may be provided. The method includes: operating the object at a first state; detecting at least one of a magnitude of the touch pressure and a size of the touch area when the touch is input to a touch panel; operating the object at a second state of a first operation according to at least one of the magnitude of the touch pressure and the size of the touch area; and operating the object at the first state when the touch is released.
Abstract:
An object action control system which performs a method for controlling the object action on the basis of a single touch or multiple touches may be provided that includes: a touch panel; a touch sensing module which recognizes a single touch or multiple touches on the touch panel by at least one input means; a change sensing module which senses at least any one of a pressure magnitude, area and time period of the touch on the touch panel by the input means which has applied the single touch and multiple touches; and an action module which performs different actions of one object in accordance with the single touch or multiple touches in conformity with a predetermined action standard.
Abstract:
A touch input device is disclosed that may comprise a display panel and/or a touch sensor. The touch sensor may include a driving electrode and/or a receiving electrode that may be disposed on the display panel and/or inside the display panel. The touch input device may comprise an electrode pattern that may be disposed on a bottom surface of the display panel. The touch input device may comprise a controller that may be configured to provide a first driving signal to the driving electrode of the touch sensor. The controller may be configured to receive a touch detection signal from the receiving electrode of the touch sensor. The controller may be configured to detect a touch position, perhaps for example based on the touch detection signal. The controller may be configured to provide a second driving signal different from the first driving signal to the electrode pattern.
Abstract:
A touch input device includes a display module, a substrate for blocking electrical noise or for separating the display module from a circuit board or battery for operation of the touch input device, and a first electrode disposed on the display module and a second electrode disposed on the substrate. A spacer layer is disposed between the first electrode and the second electrode. A pressure magnitude of the touch is detected based on a capacitance between the first electrode and the second electrode. The capacitance is changed depending on the distance between the first electrode and the second electrode. The display module is bent by the touch, and the distance between the first electrode and the second electrode is changed due to the bending of the display module. The first electrode is disposed on a bendable surface of the display module.
Abstract:
Disclosed is a touch detector which detects a touch on a touch sensor panel including a plurality of first electrodes, a plurality of second electrodes and a plurality of third electrodes. The touch detector includes: a driving signal supplier which applies a driving signal to the plurality of first electrodes; and a sensing unit which receives a first signal including information on a capacitance changing depending on the touch on a touch surface of the touch sensor panel from the plurality of second electrodes. The sensing unit detects a touch pressure and a touch position on the touch surface of the touch sensor panel.
Abstract:
A method for temporarily manipulating an operation of an object in accordance with a touch pressure or a touch area may be provided. The method includes: operating the object at a first state; detecting at least one of a magnitude of the touch pressure and a size of the touch area when the touch is input to a touch panel; operating the object at a second state of a first operation according to at least one of the magnitude of the touch pressure and the size of the touch area; and operating the object at the first state when the touch is released.
Abstract:
In one embodiment, a touch input device capable of detecting a pressure and a position of a touch on a touch surface is disclosed. The touch input device includes a cover layer of glass, a display panel, and a touch sensor panel fully laminated on the display panel. The device further includes a substrate spaced apart from the display panel and separating the display panel from a circuit board and a battery for operation of the touch input device, and a pressure electrode disposed between the display panel and the substrate. Drive electrodes are formed on one side of an insulation layer, and receiving electrodes are formed on the other side of the insulation layer. Further, a distance between the substrate and the display panel is maintained by a double adhesive tape formed on edge portions of the substrate and the display panel when no pressure is applied.
Abstract:
In one embodiment, a touch input device capable of detecting a pressure of a touch on a touch surface is disclosed. The touch input device includes a substrate and a display module. A reference potential layer is disposed within the display module. The touch input device further comprises an electrode which is disposed at a position where a distance between the electrode and the reference potential layer changes according to the touch on the touch surface. The distance changes according to a magnitude of the pressure of the touch. Further, an electric signal depending on the distance is outputted from the electrode.
Abstract:
A touch input device capable of detecting a pressure of a touch on a touch surface includes: a display module and a pressure electrode. The display module includes a display panel and a reference potential layer. An electrical signal, which is changed according to a capacitance between the pressure electrode and the reference potential layer, is detected from the pressure electrode and the capacitance changes depend on a change of a relative distance between the pressure electrode and the reference potential layer, such that the pressure of the touch is detected based on the capacitance.