摘要:
Congestion across links in a network, such as the Internet, is reduced by diverting traffic from the congested link to alternative, shortest paths by adjusting splitting factors associated with the congested and alternative links. The alternative shortest paths comprise equal cost paths. Alternatively, adjustments occur after the creation of additional equal cost paths/shortest paths if none are initially available within the network. Unique programs control the adjustment of the splitting factors and the creation of the additional shortest paths. The programs make use of both existing, real networks and constructed, virtual networks in conjunction with novel traffic flow relationships to divert traffic from a congested link without causing further congestion within the network. Another unique program deletes shortest paths once used to accept traffic diverted from a congested link when traffic in the network decreases.
摘要:
Methods and apparatus for inkjet drop positioning are provided. A first method includes determining an intended deposition location of an ink drop on a substrate, depositing the ink drop on the substrate using an inkjet printing system, detecting a deposited location of the deposited ink drop on the substrate, comparing the deposited location to the intended location, determining a difference between the deposited location and the intended location, and compensating for the difference between the deposited location and the intended location by adjusting a parameter of an inkjet printing system. Numerous other aspects are provided.
摘要:
The present invention provides methods and apparatus for controlling the quantity of fluid output (e.g., drop size) by individual nozzles of a print head to a very high precision at a frequency equal to the frequency at which fluid is normally dispensed. This is achieved by mapping fluid quantity control information into the data that represents the image to be printed. Data representative of an image is received and converted into pixel data. In at least one embodiment, the pixel data includes pixels represented by N bits, and the N bits may represent a drop size for the pixel and a union of the N bits may represent a nozzle status. A print head may be controlled based on the pixel data, and the print head may include nozzles that are each adapted to deposit at least one drop size quantity of a fluid on a substrate.
摘要:
Call admission methods for admitting connections into ATM/IP networks having a plurality of communication channels are disclosed. An overbooking technique is utilized which distinguishes among the different service classes. Each service class is assigned an overbooking factor. The call admission is determined based on the overbooking factor assigned to the class and the effective bandwidth for that service class. In addition, methods are disclosed for performing appropriate bookkeeping, i.e., updating and maintaining information concerning the state of the system.
摘要:
An advanced data structure allows lookup based upon the most significant 16 bits and the following variable number of K bits of the IP destination address. This 16/K scheme requires less than 2 MB memory to store the whole routing tables of present day backbone routers. A 16/Kc version utilizes bitmaps to compress the table to less than 0.5 MB. For the 16/K data structure each route lookup requires at most 2 memory accesses while the 16/Kc requires at most 3 memory accesses. By configuring the processor properly and developing a few customized instructions to accelerate route lookup, one can achieve 85 million lookups per second (MLPS) in the typical case with the processor running at 200 MHz. Further, the lookup method can be implemented using pipelining techniques to perform three lookups for three incoming packets simultaneously. Using such techniques, 100 MLPS performance can be achieved.
摘要:
The present invention includes a system for determining cell loss among on-off sources on a network by (a) receiving cells; and (b) measuring aggregate cell loss of said sources at port level. The method preferably includes determining aggregate cell loss of the sources; determining mean rate of each of the sources; determining burstiness of each of the sources; determining average burst length of each of the sources; determining buffer size; and approximating the cell loss ratio of each of the sources based substantially only upon the aggregate cell loss, the mean rate, the burstiness, and the average burst length. This approximation can be calculated using the formula: γ i = γ ∑ i = 1 N r j ∑ i = 1 N A j r j A i where &ggr;i is individual cell loss ratio, &ggr; is aggregate cell loss ratio, rj is mean rate, and A is computed from the formula: A i = T i B i T i + B where Ti is average burst length of each of said sources, Bi is burstiness, and B is buffer size.