Abstract:
Example motor assemblies for architectural coverings are described herein. An example architectural covering assembly includes an architectural covering movable between an upper limit position, a lower limit position, and a transition limit position between the upper limit position and the lower limit position. The example architectural covering assembly also includes a motor, a consumer touchpoint, and an architectural covering controller. In response to detecting a first gesture at the consumer touchpoint, the architectural covering controller is to activate the motor to move the architectural covering to the transition limit position and stop, and in response to detecting a second gesture at the consumer touchpoint, different from the first gesture, the architectural covering controller is to activate the motor to move the architectural covering through the transition limit position and to the upper limit position or the lower limit position.
Abstract:
Example motor assemblies for architectural coverings are described herein. An example architectural covering assembly includes an architectural covering movable between an upper limit position, a lower limit position, and a transition limit position between the upper limit position and the lower limit position. The example architectural covering assembly also includes a motor, a consumer touchpoint, and an architectural covering controller. In response to detecting a first gesture at the consumer touchpoint, the architectural covering controller is to activate the motor to move the architectural covering to the transition limit position and stop, and in response to detecting a second gesture at the consumer touchpoint, different from the first gesture, the architectural covering controller is to activate the motor to move the architectural covering through the transition limit position and to the upper limit position or the lower limit position.
Abstract:
Example motor assemblies for architectural coverings are described herein. An example motor assembly includes a motor, a first switch to trigger the motor to retract an architectural covering, a second switch to trigger the motor to extend the architectural covering, and an actuator positioned to activate the first switch when the actuator is rotated in a first direction and to activate the second switch when the actuator is rotated in a second direction. Also described herein are example lever actuators for motor assemblies of architectural coverings. An example lever actuator detaches from the motor assembly to prevent excess force on the motor assembly that could otherwise detrimentally affect the motor assembly.
Abstract:
Example motor assemblies for architectural coverings are described herein. An example architectural covering assembly includes an architectural covering movable between an upper limit position, a lower limit position, and a transition limit position between the upper limit position and the lower limit position. The example architectural covering assembly also includes a motor, a consumer touchpoint, and an architectural covering controller. In response to detecting a first gesture at the consumer touchpoint, the architectural covering controller is to activate the motor to move the architectural covering to the transition limit position and stop, and in response to detecting a second gesture at the consumer touchpoint, different from the first gesture, the architectural covering controller is to activate the motor to move the architectural covering through the transition limit position and to the upper limit position or the lower limit position.
Abstract:
A covering for an architectural opening may include a brake assembly including a first housing, a clutch on which the first housing may be mounted, a sleeve, a second housing attached to the sleeve, and a spring element attached to the second housing. The brake assembly may permit relatively unrestricted rotation of the first housing in a first direction, and impart rotational resistance to rotation of the first housing in a second direction. A method for assembling a covering for an architectural opening may include coupling a clutch to a first housing, coupling the clutch to a sleeve, coupling a second housing to the sleeve, mounting the second housing over a hub, and positioning a torsion spring between the hub and the second housing. The brake assembly may be used to impart rotational resistance to extension of a shade member, such as to resist unintended extension of the shade member.
Abstract:
A covering for an architectural opening including a roller, an end rail, and a panel rotatable onto the roller and spanning between the roller and the end rail. The panel includes a front sheet, a rear sheet, and a cell spanning between the front and rear sheet. When the front sheet is at a first position relative to the rear sheet, the cell is open. When the front sheet is at a second position relative to the rear sheet, the cell is closed.
Abstract:
A system for incorporation into a retractable covering that includes a flexible lift cord extending from a headrail to a bottom rail. The system includes a flexible protector of a length similar to that of an associated lift cord with the lift cord being operatively connected to the protector. The protector is in turn connected to a fabric extending between the headrail and the bottom rail at predetermined spaced locations so that any loop of protector formable is limited by the spacing between the locations at which the protector is connected to the fabric. The maximum size of a loop so formed in the protector and thus the lift cord associated therewith is insufficient to encapsulate a body part of a child or infant.
Abstract:
Example motor assemblies for architectural coverings are described herein. An example architectural covering assembly includes an architectural covering movable between an upper limit position, a lower limit position, and a transition limit position between the upper limit position and the lower limit position. The example architectural covering assembly also includes a motor, a consumer touchpoint, and an architectural covering controller. In response to detecting a first gesture at the consumer touchpoint, the architectural covering controller is to activate the motor to move the architectural covering to the transition limit position and stop, and in response to detecting a second gesture at the consumer touchpoint, different from the first gesture, the architectural covering controller is to activate the motor to move the architectural covering through the transition limit position and to the upper limit position or the lower limit position.
Abstract:
In one aspect, a mounting assembly for mounting an architectural covering to a support structure may include a bracket configured to be coupled to the support structure and a bracket adapter configured to be coupled to the bracket. In addition, the mounting assembly may include an end mount configured to be coupled to both an adjacent end of the covering and the bracket adapter. In accordance with aspects of the present subject matter, the various components of the mounting assembly may be configured or adapted to provide one or more advantages over known mounting assemblies.
Abstract:
An architectural-structure covering and corresponding method of manufacturing, assembly, or the like is disclosed. The architectural-structure covering including a covering comprising a front layer, a rear layer, and an intermediate barrier layer, wherein the intermediate barrier layer is coupled to a rear side of the front layer and to a front side of the rear layer so that the intermediate barrier layer is positioned between the front and rear layers. The architectural-structure covering further comprising a plurality of lift elements arranged and configured to move the covering between extended and retracted positions. The lift elements being positioned being the intermediate and rear layers. In this manner, the lift elements may be sandwiched between the intermediate and rear layers thus rending the lift elements inaccessible, or at least greatly limiting accessibility, to an end user.