摘要:
Resettable circuit interrupting devices, such as GFCI devices that include a reset lockout mechanism are provided. The GFCI comprises a reset button which is selectively blocked from resetting the GFCI.
摘要:
A typical duplex GFCI receptacles has two buttons, a test button that, when pressed, shuts off power to the receptacle and down stream devices, and a reset button that, when pressed, restores power to the GFCI and down stream devices. Generally, the test button is pressed to verify that the GFCI will interrupt power to the conductive paths and the reset button is pressed to reset the GFCI. In operation, the test portion of the GFCI will automatically break electrical continuity in one or more conductive paths (i.e., open the conductive path) between line and load sides upon the detection of a fault such as a reverse wiring condition, a ground fault, an open neutral and/or a defective GFCI device. When this happens the reset button in the typical GFCI receptacle is then pressed in an to attempt to restore power. The GFCI here disclosed has only one button which is used for both the test and reset operation. It is pressed to test the GFCI and its associated circuitry for operability and, only if all circuits are operable, upon release it resets the GFCI by closing open conductive paths. If, during operation, the test portion of the GFCI detects a fault and operates to shut off power to the receptacle and down stream devices, the pressing and releasing of the single button will reconnect power to the receptacle and down stream devices only if the GFCI is operational, if an open neutral condition does not exists and/or if the device is not reversed wired.
摘要:
A shaped member having at least one window is located within a GFCI protected receptacle and is operated by movement of the contact arm of the GFCI to assume a first position to block at least one plug receiving opening in the receptacle and a second position which locates the window to allow the prong of a plug to freely enter the face of the receptacle. In operation, when the circuit interrupting device goes into a tripped state, the contact arm moves down to open the circuit. The downward movement of the contact arm, acting through a connecting linkage causes the shaped member to move to the first position, that of blocking at least one opening in the face of the receptacle. Resetting the circuit interrupting device by pressing in and then releasing the reset button of the GFCI causes the main contacts in the circuit interrupting device to close by the upward movement of the contact arm. As the contact arm moves up, it moves the connecting linkage to position the window of the shaped member to allow the prongs of a plug to freely enter the openings in the face of the receptacle. GFCI's normally have two separate sets of internally located contacts known as bridge contacts, one set for connecting a load to the source of electricity and a second set for connecting a user accessible load to the source of electricity. In the GFCI here disclosed the bridge contacts have been eliminated, thus reducing the cost of manufacture by coupling the conductors for both the load and the user accessible load to a single set of contacts.
摘要:
Located within a GFCI device having receptacle openings in its face is a movable contact bearing arm held in either a closed or open position by a latching member connected to a spring loaded reset button. The reset button assumes a first depressed position when the GFCI is in a conducting state, and a second extended position when the GFCI is in a non conducting state. A blocking member located within the body of the GFCI is adapted to be moved to a first position to blocks at least one opening of each receptacle, or to a second position to allow the prongs of a plug to enter the receptacle openings. When the GFCI is in the conducting state, the reset button is in its first position and holds the blocking member in its first position to permit the prongs of a plug to be inserted into the receptacle openings. When the GFCI is in a non-conducting state or is defective, the reset button and the blocking member are in their second positions and the prongs of a plug are prevented from entering the receptacle.
摘要:
Located within a GFCI is a movable contact bearing arm which cooperates with at least one fixed contact. When the movable arm is moved up to allow the at least one contact on the arm to close with at least one fixed contact, the GFCI is in a conducting state and current flows from a source of electricity through the closed contacts to a load and to the contacts of a receptacle. When the movable arm is moved down to open the contacts, the GFCI is in a non-conducting state and current cannot flow from the source of electricity to either the load or the receptacle contacts. In this invention, the up and down movement of the movable contact bearing arm is harnessed to move a blocking member located within the housing of the GFCI to a first position to block at least one opening of the receptacle as the movable arm is moved down or to a second position to allow the prongs of a plug to enter the openings of the receptacle as the movable arm is moved up. The downward movement of the movable contact bearing arm occurs when the GFCI goes into a non-conducting state. Resetting the GFCI by pressing in and then releasing a reset button causes the movable contact bearing arm to move up to make contact with the at least one fixed contact. As the movable arm moves up, the blocking member moves to the first or non-blocking position to allow the prongs of a plug to freely enter the openings in the face of the receptacle. GFCI's normally have two separate sets of internally located contacts known as bridge contacts where one set is used to connect a load to the source of electricity and the second set is used to connect a user accessible load to the source of electricity. The bridge contacts provide isolation between the conductors to the load and the conductors to the contacts of the GFCI receptacle when the GFCI is in a non-conducting state. In the GFCI here disclosed, the blocking member prevents the prongs of a plug from entering the receptacle when the GFCI is in a non-conducting state and, therefore, the need for the bridge contacts is diminished.
摘要:
Located within a GFCI device having a receptacle is a movable contact bearing arm which is held in either a closed or open position with a fixed contact by a latching member that is connected to the spring loaded reset button. The reset button assumes a first or a second position which is determined by the conductive state of the GFCI. When the GFC is in a conducting state, the reset button is substantially fully depressed within the housing of the GFCI. When the GFCI is in a non-conductive state, the reset button projects outward beyond the top surface of the housing of the GCFI. Thus, the movable contact bearing arm, acting through a latching member, determines the position of the reset button. A blocking member located within the body of the GFCI is positioned by the reset button to allow free access of the prongs of a plug into the openings of the receptacle when the reset button is depressed or to block at least one opening of the receptacle to prevent a plug from entering the openings of the receptacle when the reset button projects out beyond the surface of the housing. Thus, when the GFCI is in a conducting state, the reset button is recessed within the GFCI housing and positions the blocking member to the first position to allow the prongs of a plug to be inserted into the receptacle openings. When the GFCI is in a non-conducting state, the reset button protrudes outward from the housing of the GFCI to position the blocking member to the second position to block at least one opening of the receptacle to prevent the prongs of a plug from entering the receptacle. GFCI's normally have two separate sets of internally located contacts known as bridge contacts where one set is used to connect a load to the source of electricity and the second set is used to connect a user accessible load to the source of electricity. The bridge contacts provide isolation between the conductors to the load and the conductors to the contacts of the GFCI receptacle when the GFCI is in a fault state. In the GFCI here disclosed, the blocking member prevents the prongs of a plug from entering the receptacle when the GFCI is in a fault state and, therefore, can eliminate the need for the bridge contacts.
摘要:
A shaped member having at least one window is located within a GFCI protected receptacle and is operated by movement of the contact arm of the GFCI to assume a first position to block at least one plug receiving opening in the receptacle and a second position which locates the window to allow the prong of a plug to freely enter the face of the receptacle. In operation, when the circuit interrupting device goes into a tripped state, the contact arm moves down to open the circuit. The downward movement of the contact arm, acting through a connecting linkage causes the shaped member to move to the first position, that of blocking at least one opening in the face of the receptacle. Resetting the circuit interrupting device by pressing in and then releasing the reset button of the GFCI causes the main contacts in the circuit interrupting device to close by the upward movement of the contact arm. As the contact arm moves up, it moves the connecting linkage to position the window of the shaped member to allow the prongs of a plug to freely enter the openings in the face of the receptacle. GFCI's normally have two separate sets of internally located contacts known as bridge contacts, one set for connecting a load to the source of electricity and a second set for connecting a user accessible load to the source of electricity. In the GFCI here disclosed the bridge contacts have been eliminated, thus reducing the cost of manufacture by coupling the conductors for both the load and the user accessible load to a single set of contacts.
摘要:
Resettable circuit interrupting devices, such as GFCI devices that include a reset lockout mechanism are provided. The GFCI comprises a reset button which is selectively blocked from resetting the GFCI.
摘要:
A device for providing ground fault protection for one or more loads in an electrical wiring system. The device includes a pickup for sensing electrical characteristics associated with conductors supplying power to the one or more loads and generating a pick up signal when predefined electrical characteristics are sensed; a ground fault detector powered using conductors that are independent of the conductors supplying power to the one or more loads, said ground fault detector being configured to receive said pickup signal, detect ground faults from said pickup signal, and generate a trigger signal when a ground fault is detected, and a power disconnect responsive to said trigger signal such that when said trigger signal is generated power to the one or more loads is disconnected. A corresponding method is also provided.
摘要:
Located within a GFCI is a movable contact bearing arm which cooperates with at least one fixed contact. When the movable arm is moved up to allow the at least one contact on the arm to close with at least one fixed contact, the GFCI is in a conducting state and current flows from a source of electricity through the closed contacts to a load and to the contacts of a receptacle. When the movable arm is moved down to open the contacts, the GFCI is in a non-conducting state and current cannot flow from the source of electricity to either the load or the receptacle contacts. In this invention, the up and down movement of the movable contact bearing arm is harnessed to move a blocking member located within the housing of the GFCI to a first position to block at least one opening of the receptacle as the movable arm is moved down or to a second position to allow the prongs of a plug to enter the openings of the receptacle as the movable arm is moved up. The downward movement of the movable contact bearing arm occurs when the GFCI goes into a non-conducting state. Resetting the GFCI by pressing in and then releasing a reset button causes the movable contact bearing arm to move up to make contact with the at least one fixed contact. As the movable arm moves up, the blocking member moves to the first or non-blocking position to allow the prongs of a plug to freely enter the openings in the face of the receptacle. GFCI's normally have two separate sets of internally located contacts known as bridge contacts where one set is used to connect a load to the source of electricity and the second set is used to connect a user accessible load to the source of electricity. The bridge contacts provide isolation between the conductors to the load and the conductors to the contacts of the GFCI receptacle when the GFCI is in a non-conducting state. In the GFCI here disclosed, the blocking member prevents the prongs of a plug from entering the receptacle when the GFCI is in a non-conducting state and, therefore, the need for the bridge contacts is diminished.