Abstract:
According to an aspect, a display device with a touch detection function includes: a plurality of pixel electrodes arranged in a matrix; a plurality of scanning signal lines; a drive electrode that faces the pixel electrodes; and a plurality of touch detection electrodes including a detection electrode pattern of a transparent conductive body that faces the drive electrode. The detection electrode pattern includes one or more slits each of which is a region where the transparent conductive body is not present. The slits of the detection electrode pattern of the touch detection electrodes extend in a direction different from an extending direction of the scanning signal lines with a slit pitch having a predetermined interval therebetween in the extending direction of the scanning signal lines. The slit pitch is multiples of a natural number of a predetermined pixel pitch in which the pixel electrodes are arranged.
Abstract:
A display device includes a first pixel electrode having a first strip electrode and a second strip electrode, a second pixel electrode having a third strip electrode and a fourth strip electrode disposed in the second main pixel, and a light-shielding layer overlapping the first strip electrode. The light-shielding layer has a first opening exposing the second strip electrode, and a second opening exposing the third strip electrode and the fourth strip electrode. A size of the first opening is less than a size of the second opening. A width of the second strip electrode is less than a width of the first strip electrode.
Abstract:
Disclosed is a black-matrix substrate including a substrate, a light-shielding film located over the substrate and having a plurality of openings, and a plurality of color filters arranged in the plurality of openings. The light-shielding film includes a base film over the substrate, a metal film over the base film, and a low-reflectance film located between the base film and the metal film and has an optical reflectance lower than that of the metal film. The base film may include at least one of a resin and an inorganic compound.
Abstract:
According to one embodiment, a display device includes a first substrate, a second substrate opposing the first substrate, a liquid crystal layer disposed between the first substrate and the second substrate and a sealant which seals the liquid crystal layer. The first substrate includes a pixel electrode disposed in a display area, a peripheral circuit disposed in a peripheral area surrounding the display area and a shield electrode disposed in a position overlapping the peripheral circuit in plan view. The second substrate includes a common electrode disposed in the display area and opposing the pixel electrode. The shield electrode and the common electrode do not overlap each other in plan view.
Abstract:
A display device is provided and includes first substrate having display region and frame region around display region; coloring layer disposed on first substrate; first insulation layer disposed on the coloring layer; light shielding layer disposed in matrix in display region on first insulation layer; and second insulation layer disposed on the light shielding layer, wherein part of first insulation layer in frame region part is in direct contact with first substrate, and part of first insulation layer in frame region extends along one side of first substrate.
Abstract:
According to one embodiment, a display device includes a first substrate, a second substrate, a first sealant surrounding a first chamber and a second chamber between the first substrate and the second substrate, a second sealant disposed between the first chamber and the second chamber, and a liquid crystal layer with which the first chamber and the second chamber are filled. The first chamber includes a first display portion including a first pixel. The second chamber includes a second display portion including a second pixel. The first sealant includes a first wall having a predetermined width and a second wall having a width less than the width of the first wall.
Abstract:
According to an aspect, a display device with a touch detection function includes: a plurality of pixel electrodes arranged in a matrix; a plurality of scanning signal lines; a drive electrode that faces the pixel electrodes; and a plurality of touch detection electrodes including a detection electrode pattern of a transparent conductive body that faces the drive electrode. The detection electrode pattern includes one or more slits each of which is a region where the transparent conductive body is not present. The slits of the detection electrode pattern of the touch detection electrodes extend in a direction different from an extending direction of the scanning signal lines with a slit pitch having a predetermined interval therebetween in the extending direction of the scanning signal lines. The slit pitch is multiples of a natural number of a predetermined pixel pitch in which the pixel electrodes are arranged.
Abstract:
According to one embodiment, a display device including a display function layer between a first substrate and a second substrate which are opposed to each other, wherein the second substrate includes, in a display area in which an image is displayed, a first light shielding layer extending in a first direction and a second light shielding layer extending in a second direction crossing the first direction, and the first light shielding layer and the second light shielding layer are layered while contacting each other at a crossing part.
Abstract:
According to an aspect, a display device with a touch detection function includes: a plurality of pixel electrodes arranged in a matrix; a plurality of scanning signal lines; a drive electrode that faces the pixel electrodes; and a plurality of touch detection electrodes including a detection electrode pattern of a transparent conductive body that faces the drive electrode. The detection electrode pattern includes one or more slits each of which is a region where the transparent conductive body is not present. The slits of the detection electrode pattern of the touch detection electrodes extend in a direction different from an extending direction of the scanning signal lines with a slit pitch having a predetermined interval therebetween in the extending direction of the scanning signal lines. The slit pitch is multiples of a natural number of a predetermined pixel pitch in which the pixel electrodes are arranged.
Abstract:
According to an aspect, a substrate for a display apparatus includes: a first substrate; a translucent coloring layer that overlaps with the first substrate; a first translucent resin layer that overlaps with the translucent coloring layer on an opposite side to the first substrate side; a light shielding layer that overlaps with the first translucent resin layer on an opposite side to the first substrate side; and a second translucent resin layer that overlaps with the light shielding layer on an opposite side to the first substrate side. The first translucent resin layer is in contact with the first substrate in at least a part of a frame region arranged around a display region in which light is transmitted through the translucent coloring layer.