Abstract:
According to an aspect, a display device includes: a display panel; and a parallax formation panel disposed between the display panel and a viewpoint. The parallax formation panel includes first electrodes and second electrodes, the first electrodes being provided to be able to form light transmitting regions in accordance with positions of a plurality of predetermined viewpoints, the second electrodes being provided to be able to form light shielding regions that shield regions other than the light transmitting regions from light. A width of each first electrode in a first direction in which the plurality of viewpoints are arranged is longer than a length of each first electrode in a second direction orthogonal to the first direction and extending along a display surface of the display panel.
Abstract:
According to an aspect, a display device includes a display panel including sub-pixels of three primary colors, and pixels having a high-luminance color having higher luminance than that of the primary colors. The three primary colors include a first primary color, a second primary color, and a third primary color. The number of the sub-pixels is smaller than twice the number of the pixels, sub-pixels of the same color are arranged at even intervals in a row direction and at even intervals in a column direction, and the sub-pixels of the same color are arranged in a staggered manner.
Abstract:
According to one embodiment, a display device includes a display portion and a light control element, wherein the display portion includes a pixel group including sub-pixels for displaying an image of L viewpoints, the light control element includes light controllers, the light controllers, the number of which is equal to m, overlap the pixel group, L and m each represent a natural number greater than or equal to 2, the light controller overlaps the sub-pixels, the number of which is equal to P, arranged in a first direction, and P, L, m satisfy the relationship of P=L/3m.
Abstract:
A display device includes a plurality of sub pixels; a plurality of first electrodes, the sub pixel having the plurality of first electrodes; a plurality of second electrodes, the second electrode being provided commonly for at least one row pixel group, the row pixel group including sub pixels arrayed in a line in a first direction among the plurality of sub pixels, the plurality of second electrodes being arrayed in a second direction crossing the first direction; a light emitting layer between the first electrode and the second electrode, the sub pixel having the light emitting layer; and a plurality of third electrodes facing the second electrodes, the third electrodes and the second electrodes forming capacitances, the third electrodes being connected with a plurality of output terminals respectively.
Abstract:
A display device includes a plurality of sub pixels; a plurality of first electrodes, the sub pixel including the first electrode; a plurality of second electrodes, the second electrode being provided commonly for at least one row pixel group, the row pixel group including sub pixels arrayed in a line in a first direction, the plurality of second electrodes being arrayed in a second direction; a light emitting layer between the first electrode and the second electrode, the sub pixel including the light emitting layer; an output transistor connected with the first electrode, the output transistor capable of blocking supply of an electric current to the first electrode, the light emitting layer, and the second electrode; and a plurality of third electrodes facing the second electrodes, the third electrode and the second electrode forming capacitance, the third electrode being connected with a plurality of output terminals respectively.
Abstract:
A display device includes a plurality of sub pixels; a plurality of first electrodes, the sub pixel having the plurality of first electrodes; a plurality of second electrodes, the second electrode being provided commonly for at least one row pixel group, the row pixel group including sub pixels arrayed in a line in a first direction among the plurality of sub pixels, the plurality of second electrodes being arrayed in a second direction crossing the first direction; a light emitting layer between the first electrode and the second electrode, the sub pixel having the light emitting layer; and a plurality of third electrodes facing the second electrodes, the third electrodes and the second electrodes forming capacitances, the third electrodes being connected with a plurality of output terminals respectively.
Abstract:
A pixel array substrate structure includes: first and second planarizing films sequentially stacked on a substrate where a circuit unit is formed; and a relay wire formed between the first and second planarizing films, in which the relay wire electrically connects a first contact portion formed on the first planarizing film and connected to the circuit unit with a second contact portion formed at a position different from the first contact portion when seen from above, on the second planarizing film.