摘要:
Methods of cardiac rhythm analysis in an implantable cardiac stimulus device, and devices configured for such methods. In an illustrative embodiment, certain data relating to cardiac event rate or amplitude is modified following delivery of a cardiac stimulus. In another embodiment, cardiac rhythm analysis is performed using one of plural states, with the plural states using different criteria, such as a detection threshold, to detect cardiac events in a sensed signal. Following delivery of a cardiac stimulus, data is manipulated to force the analysis into one of the states, where stimulus is delivered, in the illustrative embodiment, only after a different state is invoked. Implantable devices incorporating operational circuitry for performing such methods are also included in other illustrative embodiments.
摘要:
Methods of cardiac rhythm analysis in an implantable cardiac stimulus device, and devices configured for such methods. In an illustrative embodiment, certain data relating to cardiac event rate or amplitude is modified following delivery of a cardiac stimulus. In another embodiment, cardiac rhythm analysis is performed using one of plural states, with the plural states using different criteria, such as a detection threshold, to detect cardiac events in a sensed signal. Following delivery of a cardiac stimulus, data is manipulated to force the analysis into one of the states, where stimulus is delivered, in the illustrative embodiment, only after a different state is invoked. Implantable devices incorporating operational circuitry for performing such methods are also included in other illustrative embodiments.
摘要:
Implementations of various technologies described herein are directed toward a sensing architecture for use in cardiac rhythm management devices. The sensing architecture may provide a method and means for certifying detected events by the cardiac rhythm management device. Moreover, by exploiting the enhanced capability to accurately identifying only those sensed events that are desirable, and preventing the use of events marked as suspect, the sensing architecture can better discriminate between rhythms appropriate for device therapy and those that are not.
摘要:
Template formation methods for use in implantable cardiac rhythm management devices. In an illustrative method, a signal is captured in an implanted cardiac rhythm management device, and parameters for analysis of the captured signal are then defined. Then, in the example, additional signals can be captured and used to either verify or discard the captured signal defined parameters. The template formation methods provide for creating a robust template to compare with sensed cardiac complexes. Devices and systems configured to perform template formation and verification methods are also shown.
摘要:
Implementations of various technologies described herein are directed toward a sensing architecture for use in cardiac rhythm management devices. The sensing architecture may provide a method and means for certifying detected events by the cardiac rhythm management device. Moreover, by exploiting the enhanced capability to accurately identifying only those sensed events that are desirable, and preventing the use of events marked as suspect, the sensing architecture can better discriminate between rhythms appropriate for device therapy and those that are not.
摘要:
Template formation methods for use in implantable cardiac rhythm management devices. In an illustrative method, a signal is captured signal an implanted cardiac rhythm management device, and parameters for analysis of the captured signal are then defined. Then, in the example, additional signals can be captured and used to either verify or discard the captured signal defined parameters. The template formation methods provide for creating a robust template to compare with sensed cardiac complexes. Devices and systems configured to perform template formation and verification methods are also shown.
摘要:
The present invention is directed toward a sensing architecture for use in cardiac rhythm management devices. The sensing architecture of the present invention provides a method and means for certifying detected events by the cardiac rhythm management device. Moreover, by exploiting the enhanced capability to accurately identifying only those sensed events that are desirable, and preventing the use of events marked as suspect, the sensing architecture of the present invention can better discriminate between rhythms appropriate for device therapy and those that are not.
摘要:
Methods of using a template having a template data set and template parameters to provide improved alignment of captured cardiac signal data to a stored template. More particularly, in an illustrative method, a captured cardiac signal is first configured using template parameters for a stored template. Then, once configured, the captured cardiac signal is then compared to the stored template. Other embodiments include implantable cardiac treatment devices including operational circuitry configured to perform the illustrative method. In a further embodiment, more than one stored templates may be used. Each template can have independently constructed parameters, such that a single captured cardiac signal may be configured using first parameters for comparison to a first template, and using second parameters for comparison to a second template.
摘要:
Implementations of various technologies described herein are directed toward a sensing architecture for use in cardiac rhythm management devices. The sensing architecture may provide a method and means for certifying detected events by the cardiac rhythm management device. Moreover, by exploiting the enhanced capability to accurately identifying only those sensed events that are desirable, and preventing the use of events marked as suspect, the sensing architecture can better discriminate between rhythms appropriate for device therapy and those that are not.
摘要:
Methods of using a template having a template data set and template parameters to provide improved alignment of captured cardiac signal data to a stored template. More particularly, in an illustrative method, a captured cardiac signal is first configured using template parameters for a stored template. Then, once configured, the captured cardiac signal is then compared to the stored template. Other embodiments include implantable cardiac treatment devices including operational circuitry configured to perform the illustrative method. In a further embodiment, more than one stored templates may be used. Each template can have independently constructed parameters, such that a single captured cardiac signal may be configured using first parameters for comparison to a first template, and using second parameters for comparison to a second template.