摘要:
The present disclosure relates to the correction of charge loss in a radiation detector. In one embodiment, correction factors for charge loss may be determined based on depth of interaction and lateral position within a radiation detector of a charge creating event. The correction factors may be applied to subsequently measured signals to correct for the occurrence of charge loss in the measured signals.
摘要:
A CT detector includes a direct conversion material configured to generate electrical charge upon reception of x-rays, a plurality of metallized anodes configured to collect electrical charges generated in the direct conversion material, at least one readout device, and a redistribution layer having a plurality of electrical pathways configured to route the electrical charges from the plurality of metallized anodes to the at least one readout device. A plurality of switches is coupled to the plurality of electrical pathways between the plurality of metallized anodes and the at least one readout device, wherein each of the plurality of switches includes an input line electrically coupled to one of the plurality of metallized anodes, a first output node electrically coupled to the at least one readout device, and a second output node electrically coupled to at least one other switch of the plurality of switches.
摘要:
A radiation detector includes at least one multiple channel pixellated detector driven via a plurality of pixellated anode electrodes and at least one planar cathode electrode. Each detector is configured to reduce the number of active pixellated anode electrodes until a rate of events detected via at least one corresponding planar cathode electrode exceeds a preset threshold above a background count rate within a predetermined time period.
摘要:
A diagnostic imaging system includes a high frequency electromagnetic energy source that emits a beam of high frequency electromagnetic energy toward an object to be imaged. An energy discriminating (ED) detector receives high frequency electromagnetic energy emitted by the high frequency electromagnetic energy source. The ED detector includes a first direct conversion layer and a second direct conversion layer. The first direct conversion layer comprises a first direct conversion material and the second direct conversion layer comprises a second direct conversion material that is different from the first direct conversion material. A data acquisition system (DAS) is operably connected to the ED detector and a computer operably connected to the DAS.
摘要:
A diagnostic imaging system includes an x-ray source that emits a beam of x-ray energy toward an object to be imaged and an energy discriminating (ED) detector that receives the x-ray energy emitted by the x-ray energy source. The ED detector includes a first layer having a first thickness, wherein the first layer comprises a semiconductor configurable to operate in at least an integrating mode and a second layer having a second thickness greater than the first thickness, and configured to receive x-rays that pass through the first layer. The system further includes a data acquisition system (DAS) operably connected to the ED detector and a computer that is operably connected to the DAS. The computer is programmed to identify saturated data in the second layer and substitute the saturated data with non-saturated data from a corresponding pixel in the first layer.
摘要:
An adaptive data acquisition circuit (26) includes an amplifier (14) for amplifying electrical pulses generated by a detector (12) responsive to energy incident at the detector. The adaptive data acquisition circuit also includes a counting circuit (28) for counting amplified electrical pulses generated by the amplifier. In addition, the adaptive data acquisition circuit includes a digital logic circuit (30) for determining a pulse parameter indicative of a pulse rate and an amount of energy present in the amplified electrical pulses and for generating a control signal (34) responsive to the pulse parameter for controlling an operating parameter of the data acquisition circuit.
摘要:
A CT detector includes a plurality of metallized anodes with each metallized anode separated from another metallized anode by a gap. A direct conversion material is electrically coupled to the plurality of metallized anodes and has a charge sharing region in which an electrical charge generated by an x-ray impinging the direct conversion material is shared between at least two of the plurality of metallized anodes. An x-ray attenuating material is positioned to attenuate x-rays directed toward the charge sharing region.
摘要:
A diagnostic imaging system includes a high frequency electromagnetic energy source that emits a beam of high frequency electromagnetic energy toward an object to be imaged. An energy discriminating (ED) detector receives high frequency electromagnetic energy emitted by the high frequency electromagnetic energy source. The ED detector includes a first direct conversion layer and a second direct conversion layer. The first direct conversion layer comprises a first direct conversion material and the second direct conversion layer comprises a second direct conversion material that is different from the first direct conversion material. A data acquisition system (DAS) is operably connected to the ED detector and a computer operably connected to the DAS.
摘要:
A radiation detector includes at least one multiple channel pixelated detector driven via a plurality of pixelated anode electrodes and at least one planar cathode electrode. Each detector is configured to reduce the number of active pixelated anode electrodes until a rate of events detected via at least one corresponding planar cathode electrode exceeds a preset threshold above a background count rate within a predetermined time period.
摘要:
A photon-counting detector includes a direct conversion material constructed to directly convert an energy of at least one incident photon to an electrical signal indicative of the energy level of the at least one individual photon and a data acquisition system (DAS). The DAS includes a first comparator having a first signal level threshold that is less than an electrical signal level that is indicative of a maximum energy of a spectrum of photons, the first comparator configured to output a count when the electrical signal level exceeds the first signal level threshold, and a second comparator having a second signal level threshold that is greater than or equal to the electrical signal level indicative of the maximum energy of the spectrum of photons, the second comparator configured to output a count when the electrical signal exceeds the second signal level threshold. The DAS further includes a device configured to determine a photon count based on the counts from the first and second comparators and to output the photon count for image reconstruction.