摘要:
An imaging system is provided. The imaging system includes a rotating gantry. An x-ray source is mounted to the gantry. The system also includes a plurality of interchangeable x-ray detector modules is mounted to the gantry, opposite the x-ray source. The plurality of interchangeable detector modules includes a first detector module mounted at a first distance from the x-ray source and a second detector module mounted at a second distance from the x-ray source. The first distance is different from the second distance.
摘要:
A method for imaging an object is provided. The method includes acquiring image data of the object, wherein the image data includes a plurality of original voxels each having an original CT number, identifying, using a processing device, a subset of the original voxels based on at least one of an original CT number and a location of each original voxel, applying, using the processing device, an anisotropic smoothing filter to the identified original voxels in the subset to generate a set of smoothed voxels each having a smoothed CT number, generating, using the processing device, smoothed image data by combining the original voxels and the smoothed voxels, and analyzing the smoothed image data to determine whether the object contains contraband.
摘要:
A method for reconstructing an image of an object, the image comprising a plurality of image elements, is disclosed. The method includes accessing image data associated with the plurality of image elements, applying a first algorithm to the plurality of image elements, selecting a spatially non-homogenous set of the plurality of image elements, and applying an iterative algorithm to the set of image elements to reduce an amount of time necessary for reconstructing the image, or to improve an image quality at a fixed computation time, or both.
摘要:
A technique is disclosed for generating variance data and a variance map from measured projection data acquired from a tomography system. The method comprises accessing the measured projection data from the tomography system. The method further comprises generating the variance map from the measured projection data and displaying, analyzing or processing the variance map. The variance data is determined based upon a statistical model from measured image data, and may be used for image analysis, data acquisition, in computer aided diagnosis routines, and so forth.
摘要:
Methods for energy-sensitive computed tomography systems that use checkerboard filtering. A method of enhancing image analysis of projection data acquired using a detector configured with a checkerboard filter includes disposing in a system a detector to receive a transmitted beam of X-rays traversing through an object, where the system is configured so the detector receives both high- and one of total- and low-energy projection data; receiving the high- and one of total- and low-energy projection data at the detector; and then estimating an effective atomic number of the object and/or processing the projection data so as to mitigate reconstruction artifacts. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appended claims.
摘要:
A technique is provided for imaging a field of view using an X-ray source comprising two or more emission points. The two or more emission points may be independently operated. Independent operation of the two or more emission points in performed in accordance with a list of commands that specifies the operation of the emission points. The list of commands, in one embodiment, is stored in a sequence buffer. In other embodiments, the list of commands is generated for a given usage, without being stored in a sequence buffer.
摘要:
A technique is provided for imaging a field of view using an X-ray source comprising two or more emission points. The two or more emission points may be independently operated. Independent operation of the two or more emission points in performed in accordance with a list of commands that specifies the operation of the emission points. The list of commands, in one embodiment, is stored in a sequence buffer. In other embodiments, the list of commands is generated for a given usage, without being stored in a sequence buffer.
摘要:
A CT system includes a rotatable gantry having an opening for receiving an object to be scanned, at least one x-ray source coupled to the gantry and configured to project x-rays toward the object, a detector coupled to the gantry and having a scintillator therein and configured to receive x-rays that pass through the object, and a generator configured to energize the at least one x-ray source. The system includes a controller configured to energize the generator to project a first beam of x-rays toward the object from a first focal spot position of an anode, the first beam of x-rays having a ray traversing a path through the object, acquire imaging data from the first beam of x-rays, position the at least one x-ray source such that a second beam of x-rays projected from a second focal spot position of the anode has a ray directed to traverse the path through the object, the second anode focal spot position different than the first anode focal spot position, energize the generator to project the second beam of x-rays toward the object, and acquire imaging data from the second beam of x-rays.
摘要:
A CT imaging system includes a rotatable gantry having an opening to receive an object to be scanned. A plurality of x-ray emission sources are attached to the rotatable gantry, each x-ray emission source configured to emit x-rays in a conebeam toward the object. The CT imaging system also includes a plurality of x-ray detector arrays attached to the gantry and positioned to receive x-rays passing through the object. At least one x-ray detector array of the plurality of x-ray detector arrays is configured to receive x-rays from more than one x-ray emission source.
摘要:
An adaptive CT data acquisition system and technique is presented whereby radiation emitted for CT data acquisition is dynamically controlled to limit exposure to those detectors of a CT detector assembly that may be particularly susceptible to saturation during a given data acquisition. The data acquisition technique recognizes that for a given subject size and position that pre-subject filtering and collimating of a radiation beam may be insufficient to completely prevent detector saturation. Therefore, the present invention includes implementation of a number of CT data correction techniques for correcting otherwise unusable data of a saturated CT detector. These data correction techniques include a nearest neighbor correction, off-centered phantom correction, off-centered synthetic data correction, scout data correction, planar radiogram correction, and a number of others. The invention is applicable with energy discriminating CT systems as well as with conventional CT systems and other multi-energy CT systems, such as dual kVp-based systems.