Abstract:
Disclosed are a method for manufacturing a lithium ion conductive sulfide compound, a lithium ion conductive sulfide compound manufactured by the same, and a solid electrolyte and an all solid battery comprising the same. Particularly, the lithium ion conductive sulfide compound that is manufactured by milling at low temperature so as to increase brittleness of raw materials has differentiated particle distribution, crystal structure and mixing property from the conventional one.
Abstract:
Disclosed is a metal separator for a solid oxide regenerative fuel cell coated with a conductive spinel oxide film. In the conductive spinel oxide film, yttrium is added to a manganese-cobalt spinel oxide to suppress growth of an insulating oxide film on the surface of the metal separator and volatilization of metal. In the conductive oxide film coated on the metal separator, yttrium is segregated at the grain boundaries of the spinel so that migration of oxygen through the grain boundaries can be suppressed. Therefore, the surface of the metal separator can be protected from exposure to the atmosphere and water vapor when the solid oxide regenerative fuel cell is operated at high temperature. In addition, poisoning of electrodes by metal volatilization from the surface of the metal separator and growth of an insulating oxide film on the surface of the metal separator can be prevented. Therefore, the stability of the solid oxide regenerative fuel cell stack can be markedly improved.