Abstract:
Disclosed is an organic light-emitting element and organic light-emitting display device using the same, which has light transmission, is capable of reducing the resistance of the element, and is reliable regardless of variation in temperature or environment.
Abstract:
Disclosed herein is a white organic light emitting device including various emission layers with improved luminous efficiency, an increased color viewing angle, and low power consumption. The white organic light emitting device includes at least two charge generation layers and at least three stacks between a first electrode and a second electrode. The first stack includes an emission layer having a wavelength range of about 440 to about 470 nm, the second stack includes an emission layer having a wavelength range of about 530 to about 570 nm, and the third stack includes an emission layer having a wavelength range of about 590 to about 620 nm and an emission layer having a wavelength range of about 440 to about 470 nm.
Abstract:
Disclosed is an organic light emitting display device with an enhanced light emission efficiency at high current and an enhancement in panel efficiency through prevention of a roll-off phenomenon. The organic light emitting display device includes first and second electrodes formed on a substrate facing each other. A hole injection layer, a hole transport layer, at least first and second light emitting layers, and an electron transport layer are sequentially stacked between the first and second electrodes. The first light emitting layer includes different hosts while being doped with the same dopant in different dosages. The first light emitting layer includes a first host and a second host, and the second light emitting layer includes the first host and a third host different from the second host. The first and second light emitting layers are doped with the same phosphorescent yellow-phosphorescent green dopant in the same dosage.
Abstract:
An organic light emitting display device with improved lifespan is disclosed. The organic light emitting display device includes first and second electrodes facing each other on a substrate, at least two light emitting units formed between the first and second electrodes, an N-type charge generation layer and a P-type charge generation layer sequentially stacked between the light emitting units, and at least one auxiliary charge generation layer formed between at least any one of the P-type charge generation layer and the N-type charge generation layer and an emitting layer of the light emitting unit disposed on an upper or lower portion of the at least any one thereof and generating electrons and holes supplied to the emitting layer of the light emitting unit.