Abstract:
A dryer including a cabinet with an entry hole formed on a front surface therefore; a door installed in the entry hole; a drum disposed within the cabinet and rotatable therein, the drum holding received laundry; an evaporator disposed within the cabinet to remove moisture from air circulating through the drum by condensing the moisture; a condensate housing disposed within the cabinet, condensate from the evaporator being collected in the condensate housing; a drawer space disposed under the entry hole and depressed backward from the front surface of the cabinet; a drawer disposed in the drawer space to move relative the cabinet in such a way as to be pulled out from the drawer space; and a condensate discharge container to store the condensate moved from the condensate housing, the condensate discharge container detachably held in the drawer, and exposed to a user when the drawer is pulled out.
Abstract:
The present invention relates to a separation membrane having both antibiotic and hydrophilic properties for water treatment and a preparation method thereof. In the separation membrane of the present invention, since an organic compound (antimicrobial and/or hydrophilic compound) is chemically conjugated to non-metal inorganic nanoparticles or metal nanoparticles, the nanoparticles are not eluted from the separation membrane even when the separation membrane is used for water treatment for a long period of time, so that the separation membrane may continuously maintain antimicrobial properties and high water permeability, is safe to the human body even when used for the treatment of drinking water, such as water purification, and exhibits characteristics in which stain resistance is also significantly enhanced due to antimicrobial and hydrophilic properties, which have been continuously imparted. Furthermore, high mechanical strength is exhibited by a metal or inorganic nanofiller introduced.
Abstract:
A clothes treating apparatus includes a cabinet and a drum rotatably installed within the cabinet. The clothes treating apparatus also includes a circulation flow path in which exhaust air discharged from the drum is re-supplied to the drum and a condenser configured to allow the exhaust air and cooling air introduced from an outside of the cabinet to be heat-exchanged. The clothes treating apparatus further includes a cooling flow path configured to guide the cooling air toward the condenser and a blowing fan configured to introduce air from outside of the cabinet to an interior of the cooling flow path. In addition, the clothes treating apparatus includes a discharge opening that discharges cooling air, which has passed through the condenser, to an interior of the cabinet. The rotational shaft of the drum is disposed between the discharge opening and the blowing fan.
Abstract:
The present invention relates to a method of manufacturing a hydrophilized hollow fiber membrane by a continuous process using an extruder. According to the method of the present invention, thermal curing agent in the form of a monomer or a oligomer is added to a polymer solution, and in the melt state before a separation membrane is manufactured, thermal polymerization occurs due to an initial reaction of a thermal initiator at the appropriate temperature within a cylinder of the extruder. Thus, a hydrophilic component is evenly distributed into the membrane at the micro-level, and the hydrophilic component is not washed out, resulting in very high stability. Another advantage is high economic value and efficiency because the process for hydrophilizing the membrane as well as the process for manufacturing the membrane is carried out by the continuous process using the extruder without using conventional extrusion equipment in the form of an agitator.
Abstract:
The present invention relates to a method of manufacturing a hydrophilized hollow fiber membrane by a continuous process using an extruder. According to the method of the present invention, thermal curing agent in the form of a monomer or a oligomer is added to a polymer solution, and in the melt state before a separation membrane is manufactured, thermal polymerization occurs due to an initial reaction of a thermal initiator at the appropriate temperature within a cylinder of the extruder. Thus, a hydrophilic component is evenly distributed into the membrane at the micro-level, and the hydrophilic component is not washed out, resulting in very high stability. Another advantage is high economic value and efficiency because the process for hydrophilizing the membrane as well as the process for manufacturing the membrane is carried out by the continuous process using the extruder without using conventional extrusion equipment in the form of an agitator.