Abstract:
A circuit for converting an A.C. power supply voltage into a D.C. voltage, including: a first branch capable of providing a first power level; and a second parallel branch capable of providing a second power level greater than the first one, the second branch including a bidirectional activation switch.
Abstract:
A circuit capable of receiving, in series with at least one light-emitting diode, a rectified A.C. voltage, comprising: a first gate turn-off thyristor connected to first and second terminals of the circuit; and a control circuit for turning off the first thyristor when the voltage between the first and second terminals exceeds a threshold.
Abstract:
A method and a circuit for controlling a triac intended to be series-connected with a resistive element of positive temperature coefficient or which is at least capacitive, and a winding for starting an asynchronous motor, for supply by an A.C. voltage, the present invention including the steps of: detecting a voltage representative of the voltage across the series connection of the element and of the triac; comparing this detected voltage with respect to a threshold; and blocking a turning back on of the triac when the threshold has been exceeded.
Abstract:
A circuit for controlling the power in a load supplied by an A.C. voltage and directly connected to a first terminal of application of the A.C. voltage, including two isolated-gate bipolar transistors, connected in anti-parallel between a second terminal of application of the A.C. voltage and the load; circuitry for detecting the zero crossing of the A.C. supply voltage in a first direction; circuitry for generating, at each period of the supply voltage, a pulse of predetermined duration for controlling a first one of said transistors, the time of occurrence of the pulse being conditioned by the detection of the zero crossing of the A.C. voltage and by a desired power reference setting a variable delay of occurrence of the pulse with respect to the detected zero crossing; and circuitry for inverting and transferring said pulse to the second transistor.
Abstract:
A method and a circuit for controlling a triac intended to be series-connected with a resistive element of positive temperature coefficient or which is at least capacitive, and a winding for starting an asynchronous motor, for supply by an A.C. voltage, the present invention including the steps of: detecting a voltage representative of the voltage across the series connection of the element and of the triac; comparing this detected voltage with respect to a threshold; and blocking a turning back on of the triac when the threshold has been exceeded.
Abstract:
A power dimmer for an A.C. load including, between two terminals, two one-way switches connected in anti-parallel and controllable to be turned off and turned on, each switch being controlled by a driver circuit setting the turn-off times of each of the switches with respect to a reference value, each driver circuit being associated with a supply circuit comprising a voltage storage element in series with a one-way rectifying element, all in parallel with a voltage-limiting element, the two supply circuits being connected to each other by a capacitor and the respective supply voltages of the driver circuits being sampled across the respective capacitors of each supply circuit.
Abstract:
An analog voltage pulse generator, including a first break-over component of Shockley diode type to activate a rising edge of a pulse on an output terminal and a second component of thyristor type to block the first component and deactivate the pulse.