Abstract:
A blade outer air seal (BOAS) for a gas turbine engine includes, among other things, a seal body having a radially inner face and a radially outer face that axially extend between a leading edge portion and a trailing edge portion. The BOAS includes a trough disposed on the radially inner face and an abradable seal received within the trough. The trough is open to expose a leading edge of the abradable seal to a core flow path of the gas turbine engine.
Abstract:
The invention relates to an axially divided inner ring as well as a variable vane cascade for an aircraft engine. The inner ring and the vane cascade improve the efficiency of the aircraft engine in that differently formed vanes and/or vane mounts are formed respectively in the inner ring or in the vane cascade.
Abstract:
The invention is directed to a guide vane ring for a turbomachine, in which a vane bearing is produced in the inner ring via platform plates of the vanes and reliability against disintegration is produced via journals that extend radially inward from the platform plates, as well as a turbomachine.
Abstract:
Disclosed is an adjustable stationary blade ring of a turbomachine, whose stationary blades are each supported in a bearing body onto which an inner ring, which is divided into two half rings and acts as a seal carrier, is pushed without deformation, viewed in the circumferential direction, as well as a method for assembling a stationary blade ring of this type and a turbomachine having a stationary blade ring of this type.
Abstract:
The present invention relates to an axially divided inner ring (100) for a turbomachine, for fastening to guide vanes (13) of the turbomachine. The inner ring (100) comprises at least one first, solid ring segment (1) disposed upstream, and a second, solid ring segment (3) disposed downstream, wherein the first ring segment (1) is joined to the second ring segment (3) in a detachable manner by means of at least one fastening element. The first ring segment (1) and/or the second ring segment (3) is joined to at least one sealing segment. The inner ring comprises a securing element for securing the fastening element, wherein the securing element is joined to the first ring segment and/or to the second ring segment (3). In addition, the present invention relates to a guide vane ring of a turbomachine having guide vanes, which have an axially divided inner ring according to the invention.
Abstract:
A turbofan aircraft engine has at least one stage pressure ratio is at least 1.5, and a quotient of the total blade count divided by 110 is less than a difference ([(p1/p2)−1]) of the total pressure ratio minus one, and the total pressure ratio is greater than 4.5, and the turbine has at least two and no more than five turbine stages; and/or a product (An2) of an exit area (AL) of the second turbine and a square of a rotational speed of the second turbine at the design point is at least 4.5·1010 [in2·rpm2], and a blade tip velocity (uTIP) of at least one turbine stage of the second turbine at the design point is at least 400 meters per second. A jet and method are also provided.
Abstract:
Disclosed is a blade-disk assembly of a turbomachine, the blade-disk assembly having a plurality of adjacent rotor blades and a closure blade which are tilted into an anchoring groove, and at least one circumferential retention element which interlockingly cooperates with at least one blade, as well as a plurality of tilt-out prevention elements which are disposed between the groove base and the root portions and which, in the rest state, space the blades from the groove base when in the upper position. The blade-disk assembly further has a locking element, a portion of which is located between the groove base and the root portions and which, in the rest state, spaces the closure blade from the groove base when in the upper position. Also disclosed are a method for assembling such a blade-disk assembly, as well as a turbomachine.
Abstract:
The invention relates to a guide vane for a gas turbine, comprising an airfoil, a platform arranged at a radial end of the airfoil, an upstream flange extending radially from the platform, and a downstream flange extending radially from the platform, wherein the flanges, together with a section of the platform lying between the flanges, bound a groove extending in the circumferential direction of the gas turbine for the arrangement of a damping element. A surface of the section of the platform bounding the groove is arched radially at least in regions thereof in the direction of an opening of the groove. The invention further relates to a guide vane cluster, a housing for a gas turbine, as well as to a gas turbine.
Abstract:
The invention is directed to an engine that has a fan, a compressor with a high-pressure compressor, and a combustion chamber. The high-pressure compressor of the engine has a mean stage pressure ratio and an overall pressure ratio formed between the fan and the combustion chamber.
Abstract:
The invention relates to a compressor for an engine, wherein the compressor has compressor stages arranged in succession in a flow direction of the compressor and each compressor stage has a rotating blade cascade and a guide vane cascade arranged downstream of the rotating blade cascade and the rotating blade cascade and the guide vane cascade each have an aspect ratio.