Abstract:
Systems and methods are disclosed for object detection by receiving an image; segmenting the image; extracting features from the image; and performing a dimension-wise spatial layout selection to pick up dimensions inside a discriminative spatial region for classification.
Abstract:
A method for fine-grained image classification on an image includes automatically segmenting one or more objects of interest prior to classification; and combining segmented and original image features before performing final classification.
Abstract:
Systems and methods are disclosed for deep learning and classifying images of objects by receiving images of objects for training or classification of the objects; producing fine-grained labels of the objects; providing object images to a multi-class convolutional neural network (CNN) having a softmax layer and a final fully connected layer to explicitly model bipartite-graph labels (BGLs); and optimizing the CNN with global back-propagation.
Abstract:
Systems and methods are disclosed for classifying vehicles by performing scale aware detection; performing detection assisted sampling for convolutional neural network (CNN) training, and performing deep CNN fine-grained image classification to classify the vehicle type.
Abstract:
A computer-implemented method for detecting objects by using subcategory-aware convolutional neural networks (CNNs) is presented. The method includes generating object region proposals from an image by a region proposal network (RPN) which utilizes subcategory information, and classifying and refining the object region proposals by an object detection network (ODN) that simultaneously performs object category classification, subcategory classification, and bounding box regression. The image is an image pyramid used as input to the RPN and the ODN. The RPN and the ODN each include a feature extrapolating layer to detect object categories with scale variations among the objects.
Abstract:
Systems and methods are disclosed for classifying vehicles by performing scale aware detection; performing detection assisted sampling for convolutional neural network (CNN) training, and performing deep CNN fine-grained image classification to classify the vehicle type.
Abstract:
An object detector includes a bottom-up object hypotheses generation unit; a top-down object search with supervised descent unit; and an object re-localization unit with a localization model.
Abstract:
Methods and systems for distance metric learning include generating two random projection matrices of a dataset from a d-dimensional space into an m-dimensional sub-space, where m is smaller than d. An optimization problem is solved in the m-dimensional subspace to learn a distance metric based on the random projection matrices. The distance metric is recovered in the d-dimensional space.
Abstract:
Systems and methods for object detection by receiving an image; segmenting the image and identifying candidate bounding boxes which may contain an object; for each candidate bounding box, dividing the box into overlapped small patches, and extracting dense features from the patches; during a training phase, applying a learning process to learn one or more discriminative classification models to classify negative boxes and positive boxes; and during an operational phase, for a new box generated from the image, applying the learned classification model to classify whether the box contains an object.
Abstract:
A method is provided for classifying an image. The method includes inferring location information of an object of interest in an input representation of the image. The method further includes determining foreground object features and background object features from the input representation of the image. The method additionally includes pooling the foreground object features separately from the background object features using the location information to form a new representation of the image. The new representation is different than the input representation of the image. The method also includes classifying the image based on the new representation of the image.