EFFICIENT DISTANCE METRIC LEARNING FOR FINE-GRAINED VISUAL CATEGORIZATION
    28.
    发明申请
    EFFICIENT DISTANCE METRIC LEARNING FOR FINE-GRAINED VISUAL CATEGORIZATION 有权
    有效的距离度量学习,细致的视觉分类

    公开(公告)号:US20150117764A1

    公开(公告)日:2015-04-30

    申请号:US14524441

    申请日:2014-10-27

    CPC classification number: G06K9/6201 G06K9/6232 G06K9/6251

    Abstract: Methods and systems for distance metric learning include generating two random projection matrices of a dataset from a d-dimensional space into an m-dimensional sub-space, where m is smaller than d. An optimization problem is solved in the m-dimensional subspace to learn a distance metric based on the random projection matrices. The distance metric is recovered in the d-dimensional space.

    Abstract translation: 用于距离度量学习的方法和系统包括从d维空间向m维子空间生成数据集的两个随机投影矩阵,其中m小于d。 在m维子空间中解决了优化问题,以便基于随机投影矩阵来学习距离度量。 距离度量在d维空间中被恢复。

    Window Dependent Feature Regions and Strict Spatial Layout for Object Detection
    29.
    发明申请
    Window Dependent Feature Regions and Strict Spatial Layout for Object Detection 有权
    窗口相关特征区域和对象检测的严格空间布局

    公开(公告)号:US20140241623A1

    公开(公告)日:2014-08-28

    申请号:US14108280

    申请日:2013-12-16

    Abstract: Systems and methods for object detection by receiving an image; segmenting the image and identifying candidate bounding boxes which may contain an object; for each candidate bounding box, dividing the box into overlapped small patches, and extracting dense features from the patches; during a training phase, applying a learning process to learn one or more discriminative classification models to classify negative boxes and positive boxes; and during an operational phase, for a new box generated from the image, applying the learned classification model to classify whether the box contains an object.

    Abstract translation: 通过接收图像进行物体检测的系统和方法; 分割图像并识别可能包含对象的候选边界框; 对于每个候选边界框,将框分成重叠的小块,并从补丁中提取密集特征; 在培训阶段,应用学习过程学习一个或多个歧视性分类模型,以对负面框和正面框进行分类; 并且在操作阶段期间,对于从图像生成的新框,应用所学习的分类模型来分类所述框是否包含对象。

    Object-centric spatial pooling for image classification
    30.
    发明授权
    Object-centric spatial pooling for image classification 有权
    用于图像分类的以对象为中心的空间池

    公开(公告)号:US08761510B2

    公开(公告)日:2014-06-24

    申请号:US13676494

    申请日:2012-11-14

    CPC classification number: G06K9/62 G06K9/00624 G06K9/3233 G06K9/46 G06K9/6256

    Abstract: A method is provided for classifying an image. The method includes inferring location information of an object of interest in an input representation of the image. The method further includes determining foreground object features and background object features from the input representation of the image. The method additionally includes pooling the foreground object features separately from the background object features using the location information to form a new representation of the image. The new representation is different than the input representation of the image. The method also includes classifying the image based on the new representation of the image.

    Abstract translation: 提供了一种用于对图像进行分类的方法。 该方法包括在图像的输入表示中推断感兴趣对象的位置信息。 该方法还包括从图像的输入表示中确定前景对象特征和背景对象特征。 该方法还包括使用位置信息与背景对象特征分开地集合前景对象特征以形成图像的新表示。 新的表示与图像的输入表示不同。 该方法还包括基于图像的新表示对图像进行分类。

Patent Agency Ranking