Abstract:
An optical reception apparatus includes a wavelength dispersion compensation unit that performs wavelength dispersion compensation individually on reception signals that are obtained by receiving, by a coherent detecting scheme, an optical signal modulated in a subcarrier modulation scheme and by performing division on a subcarrier-by-subcarrier basis, and a plurality of delay compensation units that compensate for a delay between reception signals at different subcarriers among the reception signals at subcarriers obtained by the wavelength dispersion compensation.
Abstract:
A virtual environment optical communication network is generated by setting configuration parameters of physical packages of a real environment optical communication network in package emulators that a computer program has virtually constructed to implement the physical packages, the real environment optical communication network being constructed by a plurality of node devices in which the physical packages are mounted, pieces of configuration data are generated based on pieces of resource data indicating resources required for optical paths detected based on acquired configuration parameters and a requested transmission mode, optical paths are set in the virtual environment optical communication network based on the generated pieces of configuration data, and optical paths are set in the real environment optical communication network based on the pieces of configuration data that have been used to set the optical paths.
Abstract:
An optical reception device includes a coefficient update section which optimizes a dispersion coefficient used in compensation of wavelength dispersion of a received signal obtained by receiving an optical signal according to a coherent detection method and a phase rotation amount used in compensation of a nonlinear optical effect of the received signal, and a transmission characteristic estimation section which estimates a transmission characteristic of a transmission line by using the optimized dispersion coefficient and the optimized phase rotation amount.
Abstract:
A signal processing apparatus includes: a coefficient update unit configured to approximate a characteristic of a transmission line of an optical signal by a first tap coefficient vector of which an LO norm is a predetermined value or less; a zeroing unit configured to generate a second tap coefficient vector by replacing, with 0, a tap coefficient of which an absolute value is less than a threshold among tap coefficients of the first tap coefficient vector; and an adaptive filter configured to perform, based on the second tap coefficient vector, adaptive equalization processing on a digital signal corresponding to an optical signal received via the transmission line.
Abstract:
There are provided an optical transmission apparatus that subjects a transmission signal including a plurality of sequences to Hadamard transform to obtain a signal in which a predetermined delay is added to one of the sequences, optically modulates the obtained signal, and transmits the modulated signal, and an optical reception apparatus that demodulates a reception signal received from the optical transmission apparatus by subjecting the reception signal to adaptive equalization processing with a predetermined number of taps. The optical reception apparatus includes: an adaptive equalization processing unit that subjects the reception signal to adaptive equalization processing of wavelength distortion compensation with a number of taps obtained by subtracting a number in accordance with the delay from the predetermined number of taps; a delay compensation unit that subjects the reception signal subjected to the wavelength distortion compensation to delay compensation in accordance with the delay; and an inverse Hadamard transform unit that subjects the reception signal subjected to the delay compensation to inverse Hadamard transform.
Abstract:
There is provided a communication system, wherein: an optical transmission apparatus has: a first storage unit that stores amplitude distribution information, which is information representing a distribution of occurrence probabilities of symbols of an optical signal, in association with a modulation rate of an optical signal; a control unit that selects the modulation rate based on a signal band that is a band determined by the modulation rate and a device band that is a band in which a transmission path and the like allow passage of an optical signal, and controls an occurrence probability of a symbol of an optical signal based on the amplitude distribution information; and an optical transmitter that transmits an optical signal of a symbol of which the occurrence probability is controlled; and an optical reception apparatus has: an optical receiver that receives an optical signal of a symbol; a second storage unit that stores the amplitude distribution information in association with the modulation rate; and a decoding unit that detects the selected modulation rate, and decodes a symbol of a received optical signal based on the amplitude distribution information associated with the detected modulation rate.
Abstract:
An optical communication system is provided in which a serial/parallel converting unit outputs bit sequences of sequence groups a number of which is determined by a logarithmic value and a bit sequence of a highest-order sequence group, a converting unit converts the bit sequence of the sequence group input to the converting unit into a bit sequence for which a probability of occurrence of 0 or a probability of occurrence of 1 is a predetermined probability of occurrence, a selecting unit acquires a bit sequence for which the probability of occurrence is converted by a converting unit higher in order than the converting unit for the selecting unit, and selects an order of output of a symbol to other selecting units in the sequence groups higher in order than the selecting unit in accordance with the acquired bit sequence, a multiplication unit multiplies a value representing the symbol selected by a highest-order selecting unit, by a number in accordance with the bit sequence of the highest order sequence group, a transmission unit transmits an optical signal based on a result of the multiplication by the number, an optical receiver includes a reception unit and a demodulation unit, and the reception unit receives the optical signal, and performs demodulation processing.
Abstract:
A signal processing device includes a distributing unit and a plurality of correcting units with different processing performance, the distributing unit distributes a bit sequence having a first number of bits to the first correcting unit, and a bit sequence having a second number of bits less than the first number of bits to the second correcting unit having lower processing performance than the first correcting unit, the first correcting unit applies error correction processing to the bit sequence having the first number of bits distributed to the first correcting unit, and the second correcting unit applies error correction processing to the bit sequence having the second number of bits distributed to the second correcting unit.
Abstract:
Fourier transform is performed on a reception signal to obtain a first calculation value. Fourier transform is performed on a known signal to obtain a second calculation value. The first calculation value is divided by the second calculation value to obtain a third calculation value. Inverse Fourier transform is performed on the third calculation value to obtain a fourth calculation value. A maximum value of an amplitude of the fourth calculation value and a sample point at which the maximum value is obtained are detected. The position of the known signal in the reception signal is detected from the sample point at which the maximum value is obtained.
Abstract:
An increase in circuit scale is suppressed and a phase variation caused in a transmission path or the like is compensated for. An optical transmission system includes: a pilot symbol detection unit which detects a plurality of pilot symbols intermittently inserted into a received complex electric field signal that is obtained through coherent detection for a received optical signal; an error signal computation unit which calculates a complex electric field error signal indicating a phase variation at each pilot symbol based on the pilot symbols detected by the pilot symbol detection unit and a predetermined reference symbol; a compensation electric field signal generation unit which estimates a phase variation between the pilot symbols in the received complex electric field signal using filter processing based on the complex electric field error signal calculated by the error signal computation unit; and a phase noise compensation unit which performs phase compensation for the received complex electric field signal based on the phase variation between the pilot symbols estimated by the compensation electric field signal generation unit.