-
21.
公开(公告)号:US12073325B2
公开(公告)日:2024-08-27
申请号:US18337854
申请日:2023-06-20
Applicant: NVIDIA Corporation
Inventor: Junghyun Kwon , Yilin Yang , Bala Siva Sashank Jujjavarapu , Zhaoting Ye , Sangmin Oh , Minwoo Park , David Nister
IPC: G06K9/00 , B60W30/14 , B60W60/00 , G06F18/214 , G06N3/08 , G06V10/762 , G06V20/56
CPC classification number: G06N3/08 , B60W30/14 , B60W60/0011 , G06F18/2155 , G06V10/763 , G06V20/56
Abstract: In various examples, a deep neural network (DNN) is trained—using image data alone—to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors—such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that—in deployment—more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN.
-
22.
公开(公告)号:US11769052B2
公开(公告)日:2023-09-26
申请号:US17449310
申请日:2021-09-29
Applicant: NVIDIA Corporation
Inventor: Junghyun Kwon , Yilin Yang , Bala Siva Sashank Jujjavarapu , Zhaoting Ye , Sangmin Oh , Minwoo Park , David Nister
IPC: G06K9/00 , G06N3/08 , B60W30/14 , B60W60/00 , G06V20/56 , G06F18/214 , G06V10/762
CPC classification number: G06N3/08 , B60W30/14 , B60W60/0011 , G06F18/2155 , G06V10/763 , G06V20/56
Abstract: In various examples, a deep neural network (DNN) is trained—using image data alone—to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors—such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that—in deployment—more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN. In some embodiments, a sampling algorithm may be used to sample depth values corresponding to an input resolution of the DNN from a predicted depth map of the DNN at an output resolution of the DNN.
-
公开(公告)号:US20220253706A1
公开(公告)日:2022-08-11
申请号:US17723195
申请日:2022-04-18
Applicant: NVIDIA Corporation
Inventor: Yilin Yang , Bala Siva Sashank Jujjavarapu , Pekka Janis , Zhaoting Ye , Sangmin Oh , Minwoo Park , Daniel Herrera Castro , Tommi Koivisto , David Nister
Abstract: In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances to objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors, such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. Camera adaptation algorithms may be used in various embodiments to adapt the DNN for use with image data generated by cameras with varying parameters—such as varying fields of view. In some examples, a post-processing safety bounds operation may be executed on the predictions of the DNN to ensure that the predictions fall within a safety-permissible range.
-
公开(公告)号:US20220108465A1
公开(公告)日:2022-04-07
申请号:US17522624
申请日:2021-11-09
Applicant: NVIDIA Corporation
Inventor: Yilin Yang , Bala Siva Jujjavarapu , Pekka Janis , Zhaoting Ye , Sangmin Oh , Minwoo Park , Daniel Herrera Castro , Tommi Koivisto , David Nister
Abstract: In various examples, a deep neural network (DNN) is trained—using image data alone—to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors—such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that—in deployment—more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN. In some embodiments, a sampling algorithm may be used to sample depth values corresponding to an input resolution of the DNN from a predicted depth map of the DNN at an output resolution of the DNN.
-
25.
公开(公告)号:US20220019893A1
公开(公告)日:2022-01-20
申请号:US17449310
申请日:2021-09-29
Applicant: NVIDIA Corporation
Inventor: Junghyun Kwon , Yilin Yang , Bala Siva Sashank Jujjavarapu , Zhaoting Ye , Sangmin Oh , Minwoo Park , David Nister
Abstract: In various examples, a deep neural network (DNN) is trained—using image data alone—to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors—such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that—in deployment—more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN. In some embodiments, a sampling algorithm may be used to sample depth values corresponding to an input resolution of the DNN from a predicted depth map of the DNN at an output resolution of the DNN.
-
公开(公告)号:US20210272304A1
公开(公告)日:2021-09-02
申请号:US16728598
申请日:2019-12-27
Applicant: NVIDIA Corporation
Inventor: Yilin Yang , Bala Siva Sashank Jujjavarapu , Pekka Janis , Zhaoting Ye , Sangmin Oh , Minwoo Park , Daniel Herrera Castro , Tommi Koivisto , David Nister
Abstract: In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances to objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors, such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. Camera adaptation algorithms may be used in various embodiments to adapt the DNN for use with image data generated by cameras with varying parameters—such as varying fields of view. In some examples, a post-processing safety bounds operation may be executed on the predictions of the DNN to ensure that the predictions fall within a safety-permissible range.
-
-
-
-
-